Filter options

Publication Date
From
to
Subjects


Journals


Article Types
Countries / Territories
Open Access February 24, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

Computational Fluid Dynamics Modeling of Thermally Integrated Microchannel Reforming Reactors for Hydrogen Production

Abstract Many attempts have been made to improve heat transfer for thermally integrated microchannel reforming reactors. However, the mechanisms for the effects of design factors on heat transfer characteristics are still not fully understood. This study relates to a thermochemical process for producing hydrogen by the catalytic endothermic reaction of methanol with steam in a thermally integrated [...] Read more.
Many attempts have been made to improve heat transfer for thermally integrated microchannel reforming reactors. However, the mechanisms for the effects of design factors on heat transfer characteristics are still not fully understood. This study relates to a thermochemical process for producing hydrogen by the catalytic endothermic reaction of methanol with steam in a thermally integrated microchannel reforming reactor. Computational fluid dynamics simulations are conducted to better understand the consumption, generation, and exchange of thermal energy between endothermic and exothermic processes in the reactor. The effects of wall heat conduction properties and channel dimensions on heat transfer characteristics and reactor performance are investigated. Thermodynamic analysis is performed based on specific enthalpy to better understand the evolution of thermal energy in the reactor. The results indicate that the thermal conductivity of the channel walls is fundamentally important. Materials with high thermal conductivity are preferred for the channel walls. Thermally conductive ceramics and metals are well-suited. Wall materials with poor heat conduction properties degrade the reactor performance. Reaction heat flux profiles are considerably affected by channel dimensions. The peak reaction heat flux increases with the channel dimensions while maintaining the flow rates. The change in specific enthalpy is positive for the exothermic reaction and negative for the endothermic reaction. The change in specific sensible enthalpy is always positive. Design recommendations are made to improve thermal performance for the reactor.
Figures
PreviousNext
Article
Open Access February 24, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

Effects of Carbon Nanotube Structure, Purity, and Alignment on the Heat Conduction Properties of Carbon Films and Fibers

Abstract The increasing popularity of carbon nanotubes has created a demand for greater scientific understanding of the characteristics of thermal transport in nanostructured materials. However, the effects of impurities, misalignments, and structure factors on the thermal conductivity of carbon nanotube films and fibers are still poorly understood. Carbon nanotube films and fibers were produced, and the [...] Read more.
The increasing popularity of carbon nanotubes has created a demand for greater scientific understanding of the characteristics of thermal transport in nanostructured materials. However, the effects of impurities, misalignments, and structure factors on the thermal conductivity of carbon nanotube films and fibers are still poorly understood. Carbon nanotube films and fibers were produced, and the parallel thermal conductance technique was employed to determine the thermal conductivity. The effects of carbon nanotube structure, purity, and alignment on the thermal conductivity of carbon films and fibers were investigated to understand the characteristics of thermal transport in the nanostructured material. The importance of bulk density and cross-sectional area was determined experimentally. The results indicated that the prepared carbon nanotube films and fibers are very efficient at conducting heat. The structure, purity, and alignment of carbon nanotubes play a fundamentally important role in determining the heat conduction properties of carbon films and fibers. Single-walled carbon nanotube films and fibers generally have high thermal conductivity. The presence of non-carbonaceous impurities degrades the thermal performance due to the low degree of bundle contact. The thermal conductivity may present power law dependence with temperature. The specific thermal conductivity decreases with increasing bulk density. At room temperature, a maximum specific thermal conductivity is obtained but Umklapp scattering occurs. The specific thermal conductivity of carbon nanotube fibers is significantly higher than that of carbon nanotube films due to the increased degree of bundle alignment.
Figures
PreviousNext
Article
Open Access November 05, 2021 Endnote/Zotero/Mendeley (RIS) BibTeX

Compact Difference Schemes Combined with Runge-Kutta Methods for Solving Unsteady Convection-Diffusion

Abstract The convection-diffusion equation is of primary importance in understanding transport phenom-ena within a physical system. However, the currently available methods for solving unsteady convection-diffusion problems are generally not able to offer excellent accuracy in both time and space variables. A procedure was given in detail to solve the one-dimensional unsteady convec-tion-diffusion equation [...] Read more.
The convection-diffusion equation is of primary importance in understanding transport phenom-ena within a physical system. However, the currently available methods for solving unsteady convection-diffusion problems are generally not able to offer excellent accuracy in both time and space variables. A procedure was given in detail to solve the one-dimensional unsteady convec-tion-diffusion equation through a combination of Runge-Kutta methods and compact difference schemes. The combination method has fourth-order accuracy in both time and space variables. Numerical experiments were conducted and the results were compared with those obtained by the Crank-Nicolson method in order to check the accuracy of the combination method. The anal-ysis results indicated that the combination method is numerically stable at low wave numbers and small CFL numbers. The combination method has higher accuracy than the Crank-Nicolson method.
Figures
PreviousNext
Article

Query parameters

Keyword:  Junjie Chen

View options

Citations of

Views of

Downloads of