New records for the alien vascular flora of Calabria (S-Italy)
Abstract
While alien organisms, vascular plants included, are progressively increasing their worldwide impact on habitats, the present research confirms a similar dangerous trend for Calabria, the southernmost and floristically richest region of Italian Peninsula. The set of additional alien taxa here recorded for the vascular flora of Calabria includes: Acacia melanoxylon, Bidens subalternans, Buddleja davidii, Cucurbita moschata, Cyclospermum leptophyllum, Erigeron annuus subsp. annuus, Hesperocyparis glabra, Ligustrum ovalifolium, Mahonia aquifolium, Morus indica, Oenothera speciosa, Prunus serotina, Pyracantha fortuneana, Rudbeckia laciniata, Solanum nitidibaccatum, Sparaxis bulbifera, Tradescantia cerinthoides, Ulmus pumila. These additional 18 taxa bring the total number of alien species from 382 to 400. The most represented biological forms are scapose therophyte and scapose phanerophyte with 5 species (27.8% of the total). The most frequent biogeographic origins of the surveyed species are North America (6 species; 33.3%), followed by Asia and South America both with 4 species (22.2%). The most common habitats hosting the recorded alien taxa are roadsides (8 species; 44.4%), although all surveyed plants have been found in deeply anthropized environments. The altitude of occurrence, extending 3 to 1,286 m a.s.l., together with other ecological data provided, demonstrate the ability of aliens to potentially colonize a wide range of environments in the region.
1. Introduction
Human activities deeply altered the Earth biota, producing transformations that modified the ecological equilibria [1, 2]. In the current globalization era, increasing transportation, communications, large scale trading promoted the transfer of a huge amount of plant species outside of their native geographical range, determining a constant erosion of existing biogeographic barriers [3, 4, 5]. Several alien species now represent a permanent component of the flora of the countries where have been introduced [6]. Aliens are today considered one of the main threats to the biodiversity conservation [7, 8, 9] because they are often able to modify the colonized habitats, where they reproduce and spread, altering the ecosystem services, with heavy consequences on ecological, economic and social order [10, 11, 12]. The occurrence of exotic species usually characterizes anthropized areas, especially those where human settlements, farming and industries are concentrated [13]. The destruction of natural environment, urbanization and the anthropic disturb ineluctably promote the propagation of exotic species [14, 15], due to their ability to spread at the expense of native vegetation and substitute it thank to several adaptations [16, 17, 18, 19]. Moreover, the human induced climate change is recognized as one of the factors responsible of the competitive advantage of alien species [20, 21]. Although not all the alien species show the same invasive tendency, every new exotic taxon could negatively affect the native phytocoenoses, and anyway the long-term invasiveness of each taxon in a given area it is not always easy to foresee. The damage of alien species is usually wider in areas expressing highest naturality, such as native forests, national parks and wetlands, where defending biodiversity is crucial for conservation. The level of mixing of floras with different biogeographical origin in all continents is actually so high and uncontrolled, due to human activities, that physical barriers and even geographical distances among continents are virtually inexistent, and anyway unable to keep biogeographical regions well separated. That’s why some scientists believe that biosphere is today experiencing a sort of “Pangea effect”, under which unprecedented numbers of vascular plants with any biogeographic origin mix each other determining an increasing biotic homogenization [22], resulting in a dangerous global loss of floristic uniqueness [23] and in inedited combinations, some of which are reversible (hybrid ecosystems) and some irreversible (novel ecosystems) [24] whose medium and long term consequences on biodiversity and ecosystem services are completely unpredictable.
At European level, Italy is one of the countries with the highest number of exotic species, representing about 20% of national flora [25] due to an ancient history of trading among the Mediterranean and European countries, and even the massive industrialization of Northern regions [26, 27]. Massive is also the voluntary introduction of species from North America and SE-Asia, such as Robinia pseudoacacia with forestry purpose, Ailanthus altissima and Artemisia annua respectively for fabric and medicine purposes, Prunus laurocerasus and Parthenocissus quinquefolia for ornamental use. Calabria as well, has a large contingent of exotic species as part of its vascular flora, showing increasing importance and interest demonstrated by the growing number of new records reported for this territory during recent years [28].
Aim of this research is to report new exotic species found in Calabria during the 2021-2023 investigations, so providing further information about the occurrence of exotic flora in Calabria and in Italy.
2. Materials & methods
2.1. Study area
Calabria is the southernmost continental region of Italy (Figure 1A), surrounded E, W and S by seas (Ionian, Tyrrhenian and Messina Strait), and abruptly separated from the continental Italy by the Pollino massif, whose highest mountain top is Serra Dolcedorme (2,267 m a.s.l.). The complex orography – characterized by Calabrian Apennine mountain ranges (Pollino, Orsomarso, Sila, Catena Costiera, Serre and Aspromonte) quite close to coasts – and the extremely heterogeneous geology are at the basis of a wide climatic diversity and different plant communities [29] occurring in Calabria. The vascular flora native to the region counts about 2,700 taxa [30], part of which are the 60 strictly regional endemics and the 270 national endemics [31], the highest values recorded among Italian continental regions. According to Spampinato et al. [28] Calabria flora counts 382 alien taxa, 14% of its total vascular flora.
During 2021-2023, Catanzaro urban area, a few localities surrounding the administrative capital of Calabria, and few areas encompassed in the Sila National Park have been specifically surveyed for exotic flora (Figure 1B).
2.2. Specimen and data collection and manipulation
The surveyed stands and the specimens collected have been georeferenced using a GPS device (Garmin Montana 650t). Each plant has been collected and dried in at least two voucher copies applying the common herbarium techniques. Exsiccata have been stored in the herbarium of Department of Agraria, Mediterranean University of Reggio Calabria (code REGGIO, according to Thiers [32]). A voucher copy of each specimen is also stored in the Herbarium Capuano (Catanzaro).
Maps have been drawn using Quantum GIS software [33] and data have been tabled and analysed by Microsoft Excel software [34].
Nomenclature, taxa delimitation, and regional distribution are reported according to Galasso et al. [25] and the following updates synthetized by Spampinato et al. [28]. The specimens were identified according to Flora d’Italia [35, 36], Flora of North America [37], Flora of China [38], Flora of Japan [39, 40] plus additional literature. Life forms and native ranges have been provided according to Pignatti [35], Pignatti [36], Portal to the Flora of Italy [41] and the linked Acta Plantarum database [42]. The time of introduction of the recorded taxa has been added according to the Portal to the Flora of Italy [41].
Each taxon has been described in detail as a file containing the following information: accepted binomial, basionym and most relevant synonyms, plant family, period of introduction (whether neophyte or archeophyte), native range, life form, data record in Calabria or Italy, date of collection, discovery localities (municipality, administrative province), exsiccata with details on the location according to the information reported on the specimen label, invasiveness status according to Pyšek et al. [43], decimal degrees geographic coordinates (datum WGS84), altitude (m a.s.l.), habitat features, legit and determinavit, herbaria where the specimens are stored, and current distribution.
3. Results
The survey found a total of 18 alien taxa new for the regional territory that now counts totally 400 alien vascular plants. The invasiveness status proposed for all the recorded taxa, according to Richardson et al. [44] and Pyšek et al. [43] is casual, except for Bidens subalternans, deserving the naturalized status. Several of the found species, in fact, occur in one or few stands, proving colonization processes to be in an early stage.
Each genus is represented, in this survey, by just one species. The most represented families are Asteraceae, with 3 genera (Bidens, Erigeron, Rudbeckia), and Rosaceae with 2 (Prunus, Pyracantha), while all other taxa are represented by just one genus.
The most common life form inside this contingent of alien taxa are scapose therophyte and scapose phanerophyte both counting 5 species (27.8%), followed by caespitose phanerophytes (4 species; 22.2%) (Table 1A).
By biogeographical point of view, most of the recorded taxa come from North American biogeographical region (6 species; 33.3%), followed by 4 species (22.2%) coming from the Asian biogeographical region, and as many coming from South America (Tab. 1B). According to available data all the recorded species can be considered neophytes.
All species have been found in synanthropic habitats, 8 of which (44.4%) at roadsides, while 2 species (11.1%) both inside flowerbeds and in uncultivated areas (Table 1C).
The recorded species have been found covering an altitude range of 3-1,286 m a.s.l..
4. Discussion
The amount of taxa found, their biogeographical origins, the prevailing ruderal and synanthropic habitats confirm the trend of an increasing pressure of alien plant species at regional and national level, as respectively already proposed by Spampinato et al. [28] and Galasso et al. [25]. The occurrence of many therophytes in this survey probably testifies the high efficiency of this life form to develop and persist in disturbed habitats, while the high number of phanerophytes is probably due to the past introduction of alien trees in Europe for ornamental or forestry purposes that still continues sometimes nowadays. Many of these plants show specific adaptations to the vegetative reproduction which support surviving and spread along the time. A few peculiar synanthropic ecological niches, such as abandoned fields and urban areas, according to Wagner et al. [45], could sometimes represent ecological corridors that promote the spread of these species across natural and seminatural environments. Phanerophytes included in this survey, according to other European sources [46, 47, 48] have been confirmed occurring even outside of urban areas, despite most of the findings have been associated to urban or suburban contexts. Most of the reported species have been found in highly anthropized environments, due probably to the ability of alien species to settle on weak ecological niches where most of the native species could not develop permanent colonies. In fact, urban and suburban areas are well known alien species hot spots, also as a result of the amount of exotic species used as ornamentals in private and public spaces, such as parks and gardens, often without any preliminary consideration for the biogeographical origin and the invasive potential of the chosen taxa. Moreover, the wide altitudinal range, along with the diversity of colonized habitat, suggests the huge potential of these taxa to potentially invade many different ecosystems in the investigated territory and the surrounding regions. A high number of taxa coming from American continent confirms data provided by Pyšek et al. [49], according which almost 50% of European exotic flora (except alien species of European origin) are from Northern and Southern America. Consistently with Pyšek et al. [43], Pyšek et al. [49] and Follak et al. [50] our data confirms that human modified habitats (e.g. agriculture and industrial zones, park and gardens) host in Europe most of alien species, much more than grasslands and wooded areas.
5. Conclusions
During last years the investigation on bioinvasions attracted increasing interest by scholars, mainly because of negative effects on natural environment and ecosystem services [43, 51]. Recent field survey has shown the increasing number of exotic species new not just to the regional territory, but even to Italy and Europe as well [52, 53, 54, 55, 56, 57, 5828, 59, 60]. The lacking knowledge about the Calabrian vascular exotic flora, according to Musarella et al. [61], was probably due to missing deep territory exploration. Calabria, according to Spampinato et al. [28], and also with the additions provided by this work, is a Mediterranean and European region where a high number of exotic plant species has been recorded. The timely identification of exotic species in a territory allows to understand and predict in advance the dynamics of colonization and expansion, so that management plans can be scheduled [62, 63]. Control and eradication, almost always potentially useful to reduce the impact of some invasive aliens, rarely can be applied because of technical difficulties and, above all, reduced resources specifically dedicated to this goal [64, 65], despite in the today scenario of climatic-environmental crisis, the amount of alien species is tendentially destinated to increase, further threating biodiversity and native ecosystems, and so representing one of the challenges requesting most commitment in the next future [66]. A kind of long term effective approach to the mitigation of effects of bioinvasions would be based on a mixed strategy, including actions such as (1) implementing in the school curricula lab based educative programs addressed to pupils belonging to different age classes, in order to provide them the best possible awareness about risks coming from the introduction of exotic organisms [29] (2) adopting specific legislative barriers (e.g. city green rules) discouraging (e.g. higher taxes) or forbidding the introduction of new exotic species [67], (3) introducing strict limitations to the cultivation of non-native species, especially in the next proximity of rural or natural areas, (4) avoiding the abandonment of areas potentially highly sensible to bioinvasions [68, 69], (5) favoring the spontaneous recover of natural vegetation when possible, (6) recovering degraded habitats when technically (hybrid ecosystems) and financially possible implementing specific eradication plans, (7) mitigating the effect of bioinvasions when eradication is practically impossible (novel ecosystems), (8) monitoring trajectories taken by restoration processes, (9) adjusting trajectories according to realistic target ecosystems when necessary [24].
Appendix
References
- Head, L; Larson, B.M.H.; Hobbs, R.; Atchison, J.; Gill N.; Kull, C.; Rangan, H. Living with Invasive Plants in the Anthropocene: The Importance of Understanding Practice and Experience. Conservation & Society, 2015, 13 (3) 311-318.
- Dutta, H. Insights into the phenomenon of alien plant invasion and its synergistic inter-linkage with three current ecological issues. Journal of Asia-Pacific Biodiversity. 2018, 11. 10.1016/j.japb.2018.03.002.
- van Kleunen, M.; Dawson, W.; Essl, F.; Pergl, J.; Winter, M.; Weber, E.; Kreft, H.; Weigelt, P.; Kartesz, J.; Nishino, M.; Antonova, L.; Barcelona, J.; Cabezas, F.; Cárdenas, D.; Cárdenas-Toro, J.; Castaño, N.; Chacón-Madrigal, E.; Chatelain, C.; Ebel, A.; Pyšek, P. Global exchange and accumulation of non-native plants. Nature. 2015, 525, 100–103. 10.1038/nature14910.
- Bonnamour, A.; Gippet, J.; Bertelsmeier, C. Insect and plant invasions follow two waves of globalisation. Ecology Letters. 2021, 24. 10.1111/ele.13863[CrossRef]
- Glasnović, P.; Cernich S.; Peroš J.; Tišler M.; Fišer Ž.; Surina, B. Diversity and Typology of Land-Use Explain the Occurrence of Alien Plants in a Protected Area. Plants. 2022, 11(18):2358. https://doi.org/10.3390/plants11182358[CrossRef]
- Seebens, H.; Blackburn, T.; Dyer, E.; Genovesi, P.; Hulme, P.; Jeschke, J.; Pagad, S.; Pyšek, P.; van Kleunen, M.; Winter, M.; Ansong, M.; Arianoutsou, M.; Bacher, S.; Blasius, B.; Brockerhoff, E.; Brundu, G.; Capinha, C.; Causton, C.; Celesti-Grapow, L.; Essl, F. Global rise in emerging alien species results from increased accessibility of new source pools. Proceedings of the National Academy of Sciences. 2018, 115. 201719429. 10.1073/pnas.1719429115.
- Vilà, M.; Espinar, J.L.; Hejda, M.; Hulme, P.E.; Jarošík, V.; Maron, J.L.; Pergl, J.; Schaffner, U.; Sun, Y.; Pyšek, P. Ecological impacts of invasive alien plants: a meta‐analysis of their effects on species, communities and ecosystems. Ecology Letters, 2011, 14: 702-708. https://doi.org/10.1111/j.1461-0248.2011.01628.x
- Foxcroft, L.C.; Pyšek, P.; Richardson, D.; Pergl, J.; Hulme, P. The Bottom Line: Impacts of Alien Plant Invasions in Protected Areas. 2013, 10.1007/978-94-007-7750-7_2.[CrossRef]
- Lazzaro, L.; Bolpagni, R.; Buffa, G.; Gentili, R.; Lonati, M.; Stinca, A.; Acosta, A.; Adorni, M.; Aleffi, M.; Allegrezza, M.; Angiolini, C.; Assini, S.; Bagella, S.; Bonari, G.; Bovio, M.; Bracco, F.; Brundu, G.; Caccianiga, M.; Carnevali, L.; Lastrucci, L. Impact of invasive alien plants on native plant communities and Natura 2000 habitats: State of the art, gap analysis and perspectives in Italy. Journal of Environmental Management. 2020, 274. 111140. 10.1016/j.jenvman.2020.111140.[CrossRef] [PubMed]
- Pyšek, P.; Jarošík, V.; Hulme, P.E.; Pergl, J.; Hejda, M.; Schaffner, U.; Vilà, M. A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Global Change Biology, 2012, 18: 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x
- Durigan, G.; Ivanauskas, N.; Zakia, M.; Abreu, R. Control of Invasive Plants: Ecological and Socioeconomic Criteria for the Decision Making Process. Natureza & Conservacao. 2013, 11. 23-30. 10.4322/natcon.2013.003.
- Haubrock, P.J.; Turbelin, A.J.; Cuthbert, R.N.; Novoa, A.; Taylor, N.G.; Angulo, E.; Ballesteros-Mejia, L.; Bodey, T.W.; Capinha, C.; Diagne, C.; Essl, F.; Golivets, M.; Kirichenko, N.; Kourantidou, M.; Leroy, B.; Renault, D.; Verbrugge, L.; Courchamp, F. Economic costs of invasive alien species across Europe. In: Zenni, R.D.; McDermott, S.; García-Berthou, E.; Essl, F. (eds.) The economic costs of biological invasions around the world. NeoBiota, 2021, 67: 153-190. https://doi.org/10.3897/neobiota.67.58196[CrossRef]
- Chytrý, M.; Pyšek, P.; Wild, J.; Pino, J.; Maskell, L.C.; Vilà, M. European map of alien plant invasions based on the quantitative assessment across habitats. Diversity and Distributions, 2009, 15: 98-107. https://doi.org/10.1111/j.1472-4642.2008.00515.x[CrossRef] [PubMed]
- Jauni, M.; Gripenberg, S.; Ramula, S. Non-native plant species benefit from disturbance: A meta-analysis. Oikos. 2014, 124. 10.1111/oik.01416.[CrossRef]
- Potgieter, L.; Douwes, E.; Gaertner, M.; Measey, J.; Paap, T.; Richardson, D. Biological Invasions in South Africa’s Urban Ecosystems: Patterns, Processes, Impacts, and Management. 2020, 10.1007/978-3-030-32394-3_11.
- Godoy, O.; Richardson, D.M.; Valladares, F.; Castro-Díez, P. Flowering phenology of invasive alien plant species compared with native species in three Mediterranean-type ecosystems, Annals of Botany, 2009, 103 (3) 485-494, https://doi.org/10.1093/aob/mcn232
- van Kleunen, M; Bossdorf, O.; Dawson, W. The Ecology and Evolution of Alien Plants. Annual Review of Ecology, Evolution, and Systematics, 2018, 49. 10.1146/annurev-ecolsys-110617-062654.[CrossRef]
- Dalle Fratte, M.; Bolpagni, R.; Brusa, G.; Caccianiga, M.; Pierce, S.; Zanzottera, M.; Cerabolini, B. Alien plant species invade by occupying similar functional spaces to native species. Flora. 2019, 257. 151419. 10.1016/j.flora.2019.151419.[CrossRef] [PubMed]
- Liao, H.; Pál, R.; Niinemets, Ü.; Bahn, M.; Cerabolini, B.; Peng, S. Different functional characteristics can explain different dimensions of plant invasion success. Journal of Ecology. 2020, 109. 10.1111/1365-2745.13575.
- Liu, Y.; Oduor, A.M.O.; Zhang, Z.; Manea, A.; Tooth, I.M.; Leishman, M.R.; Xu, X.; van Kleunen, M. Do invasive alien plants benefit more from global environmental change than native plants? Glob Chang Biol, 2017, 23 (8): 3363-3370. https://doi.org/10.1111/gcb.13579[CrossRef]
- Turbelin, A.; Catford, J.A. Chapter 25 - Invasive plants and climate change, in: Letcher, T.M. (ed) Climate Change (Third Edition), Elsevier, 2021, 515-539. ISBN 9780128215753, https://doi.org/10.1016/B978-0-12-821575-3.00025-6
- Baiser, B.; Olden, J.D.; Record, S.; Lockwood, J.L.; McKinney, M.L. Pattern and process of biotic homogenization in the New Pangaea. Proceedings of the Royal Society B-Biological Sciences, 2012, 279, 4772–4777. https://doi.org/10.1098/rspb.2012.1651[CrossRef]
- Yang, Q.; Weigelt, P.; Fristoe, T.S.; Zhang, Z.; Kreft, H.; Stein, A.; Seebens, H.; Dawson, W.; Essl, F.; König C.; Lenzner, B.; Pergl, J.; Pouteau, R.; Pyšek, P.; Winter, M.; Ebel, A.L.; Fuentes, N.; Giehl, E.L.H., Kartesz, J.; Krestov, P.; Kukk, T.; Nishino, M.; Kupriyanov, A.; Villaseñor, J.L.; Wieringa, J.J.; Zeddam, A.; Zykova, E.; van Kleunen, M. The global loss of floristic uniqueness. Nature Communications, 2021, 12:7290 https://doi.org/10.1038/s41467-021-27603-y[CrossRef]
- Hobbs, R.J.; Higgs, E.S.; Hall, C.H. Novel ecosystems. Intervening in the New Ecological World Order. Wiley-Blackwell. 2013, 368 pp. Oxford, UK.[CrossRef]
- Galasso, G.; Conti, F.; Peruzzi, L.; Ardenghi, N.M.G.; Banfi, E.; Celesti-Grapow, L.; Albano, A.; Alessandrini, A.; Bacchetta, G.; Ballelli, S.; Bandini Mazzanti, M.; Barberis, G.; Bernardo, L.; Blasi, C.; Bouvet, D.; Bovio, M.; Cecchi, L.; Del Guacchio, E.; Domina, G.; Fascetti, S.; Gallo, L.; Gubellini, L.; Guiggi, A.; Iamonico, D.; Iberite, M.; Jiménez-Mejías, P.; Lattanzi, E.; Marchetti, D.; Martinetto, E. Masin, R.R.; Medagli, P.; Passalacqua, N.G.; Peccenini, S.; Pennesi, R.; Pierini, B.; Podda, L.; Poldini, L.; Prosser, F.; Raimondo, F.M.; Roma-Marzio, F.; Rosati, L.; Santangelo, A.; Scoppola, A.; Scortegagna, S.; Selvaggi, A.; Selvi, F.; Soldano, A.; Stinca, A.; Wagensommer, R.P.; Wilhalm T.; Bartolucci F. An updated checklist of the vascular flora alien to Italy, Plant Biosystems, 2018a, 152:3, 556-592. https://doi.org/10.1080/11263504.2018.1441197[CrossRef]
- Banfi, E.; Galasso, G. La flora esotica lombarda. Regione Lombardia e Museo Storia Naturale di Milano, 2010, 273 pp.[CrossRef]
- Lazzeri, V. The alien vascular flora of Tuscany (Italy): update and analysis. Quad. Mus. St. Nat. Livorno, 2015-2016, 26: 43-78. http://musmed.provincia.livorno.it/fileadmin/museo/ Quaderni/26/Flora_esotica_Toscana.pdf[CrossRef]
- Spampinato, G.; Laface, V.L.A.; Posillipo, G.; Cano Ortiz, A.; Quinto Canas, R.; Musarella, C.M. Alien flora in Calabria (Southern Italy): an updated checklist. Biol Invasions, 2022, 24, 2323–2334. https://doi.org/10.1007/s10530-022-02800-y
- Caruso, G. Calabrian Native Project: Botanical Education Applied to Conservation and Valorization of Autochthonous Woody Plants. Research Journal of Ecology and Environmental Sciences, 2022, 2(2), 47-59. https://www.scipublications.com/journal/index.php/rjees/article/view/387
- Bartolucci, F.; Peruzzi, L.; Galasso, G.; Albano, A.; Alessandrini, A.; Ardenghi, N.M.G.; Astuti, G.; Bacchetta, G.; Ballelli, S.; Banfi, E.; Barberis, G.; Bernardo, L.; Bouvet, D.; Bovio, M.; Cecchi, L.; Di Pietro, R.; Domina, G.; Fascetti, S.; Fenu, G.; Festi, F.; Foggi, B.; Gallo, L.; Gottschlich, G.; Gubellini, L.; Iamonico, D.; Iberite, M.; Jiménez-Mejías, P.; Lattanzi, E.; Marchetti, D.; Martinetto, E.; Masin, R.R.; Medagli, P.; Passalacqua, N.G.; Peccenini, S.; Pennesi, R.; Pierini, B.; Poldini, R.; Prosser, F.; Raimondo, F.M.; Roma-Marzio, F.; Rosati, L.; Santangelo, A.; Scoppola, A.; Scortegagna, S.; Selvaggi, A.; Selvi, F.; Soldano, A.; Stinca, A.; Wagensommer, R.P.; Wilhalm, T.; Conti, F. An updated checklist of the vascular flora native to Italy, Plant Biosystems. 2018, 152: 2, 179-303. https://doi.org/10.1080/11263504.2017.1419996
- Peruzzi, L.; Conti, F.; Bartolucci, F. An inventory of vascular plants endemic to Italy. Phytotaxa, 2014, 168:1–75. https://doi.org/10.11646/phytotaxa.168.1.1
- Thiers, B. Index herbariorum: a global directory of Public Herbaria and Associated Sta. New York Botanical Garden’s Virtual Herbarium. 2021, http://sweetgum.nybg.org/science/ih/ [accessed 4th December 2022].[CrossRef]
- QGIS. Quantum GIS 3.30.3 s-Hertogenbosch (released 26.05.2023), 2023 [downloaded 4th June 2023].
- Microsoft Excel. Excel 2023. In: Microsoft Office. Microsoft Corporation, Redmond, WA, 2023.
- Pignatti, S. Flora d’Italia; vol. 1-3; Edagricole, 1982, Bologna, Italy.[CrossRef]
- Pignatti, S. Flora d’Italia. Vol. 1-4: Flora d’Italia & Flora Digitale, 2nd ed.; Edagricole-EdizioniAgricole di New Business Media srl. Milano, Italy, 2017-2019; ISBN 978-88-506-5242-6.[CrossRef]
- Flora of North America Editorial Committee. eds. Flora of North America North of Mexico [Online]. 22+ vols. New York and Oxford. 1993-2023, http://beta.floranorthamerica.org [accessed 4th June 2023].[CrossRef]
- eFloras. www.efloras.org (Flora of China) [accessed 4th May 2023], Missouri Botanical Garden, St. Louis, MO & Harvard University Herbaria, 2008, Cambridge, MA.[CrossRef]
- Oi, J.; Meyer, F.G.; Walker, E.H. Flora of Japan: in English, combined, much revised and extended translation, Smithsonian Institution, 1965, Washington D.C.[CrossRef]
- Iwatsuki, K.; Boufford, D.E.; Ohba, H. Flora of Japan, vol. 2a, 2006, Kodansha, Tokyo.
- Portal to the Flora of Italy. Available at http://dryades.units.it/floritaly, 2023 [accessed 4th June 2023].
- Acta Plantarum, Scheda IPFI, Acta Plantarum. 2007-2023, Available on line: https://www.actaplantarum.org (accessed 03/10/2023).
- Pyšek, P.; Richardson, D.M.; Rejmánek, M.; Webster, G.L.; Williamson, M.; Kirschner, J. Alien plants in checklists and floras: Towards better communication between taxonomists and ecologists. Taxon, 2004, 53, 131-143.
- Richardson, D.M.; Pyšek, P.; Rejmánek, M.; Barbour, M.G.; Panetta, F.D.; West, C.J. Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions, 2000, 6: 93-107.[CrossRef]
- Wagner, V.; Chytrý, M.; Jiménez-Alfaro, B.; Pergl, J.; Hennekens,S.; Biurrun, I.; Knollová, I.; Berg, C.; Vassilev, K.; Rodwell, J.S.; Škvorc, Ž.; Jandt, U.; Ewald, J.; Jansen, F.; Tsiripidis, I.; Botta-Dukát, Z.; Casella, L.; Attorre F.; Rašomavičius, V.; Ćušterevska, R.; Schaminée, J.H.J.; Brunet, J.; Lenoir, J.; Svenning, J.-C.; Kącki, Z.; Petrášová-Šibíková, M.; Šilc, U.; García-Mijangos, I.; Campos, J.A.; Fernández-González, F.; Wohlgemuth, T.; Onyshchenko, V.; Pyšek P. Alien plant invasions in European woodlands. Divers Distrib. 2017, 23: 969-981. https://doi.org/10.1111/ddi.12592
- Csontos, P.; Tamás, J. Spread of invasive phanerophytes and further records to the distribution of woody species in Hungary. Journal of Landscape Ecology. 2006, 4. 127-138.[CrossRef]
- Arianoutsou, M.; Bazos, I.; Delipetrou, P.; Kokkoris, Y. The alien flora of Greece: taxonomy, life traits and habitat preferences. Biol Invasions, 2010, 12, 3525–3549. https://doi.org/10.1007/s10530-010-9749-0[CrossRef]
- Lapin, K.; Oettel, J.; Steiner, H.; Langmaier, M.; Sustic, D.; Starlinger, F.; Kindermann, G.; Frank, G. Invasive alien plant species in unmanaged forest reserves, Austria. NeoBiota, 2019, 48: 71-96. https://doi.org/10.3897/neobiota.48.34741[CrossRef]
- Pyšek, P; Lambdon, P.; Arianoutsou, M; Kühn, I.; Pino, J.; Winter, M. Alien Vascular Plants of Europe. 2009, 10.1007/978-1-4020-8280-1_4.[CrossRef]
- Follak, S.; Eberius, M.; Essl, F.; Fürdös, A.; Sedlacek, N.; Trognitz, F. Invasive alien plants along roadsides in Europe. EPPO Bulletin. 2018, 48. 10.1111/epp.12465.[CrossRef]
- Dutra Silva, L.; Bento Elias, R.; Silva L. Modelling invasive alien plant distribution: A literature review of concepts and bibliometric analysis. Environ. Model. Softw. 2021, 145 C. https://doi.org/10.1016/j.envsoft.2021.105203[CrossRef]
- Stinca, A.; Galasso, G.; Banfi, E. First Italian record of Paspalum notatum Flüggé (Poaceae) and its typification. Acta Botanica Croatica, 2016, 75. 153-156. 10.1515/botcro-2016-0012.[CrossRef]
- Stinca, A.; Chianese, G.; D’Auria, G.; Del Guacchio, E.; Fascetti, S.; Perrino, E.V.; Rosati L.; Salerno, G.; Santangelo A. New alien vascular species for the flora of southern Italy. Webbia, 2017, 72(2):295–301. https://doi.org/10.1080/00837792.2017.1349236[CrossRef]
- Laface, V.L.A.; Musarella, C.M.; Cano Ortiz, A.; Quinto Canas, R.; Cannavò, S.; Spampinato, G. Three New Alien Taxa for Europe and a Chorological Update on the Alien Vascular Flora of Calabria (Southern Italy). Plants. 2020, 9 (9) 1181. https://doi.org/10.3390/plants9091181[CrossRef]
- Rosati, L.; Fascetti, S.; Romano, V.A.; Potenza, G.; Lapenna, M.R.; Capano, A.; Nicoletti, P.; Farris, E.; de Lange, P.J.; Del Vico, Ev.; Facioni, L.; Fanfarillo, E.; Lattanzi, E.; Cano-Ortiz, A.; Marignani, M.; Fogu, M.C.; Bazzato, E.; Lallai, E.; Laface, V.L.A.; Musarella, C.M.; Spampinato, G.; Mei, G.; Misano, G.; Salerno, G.; Esposito, A.; Stinca, A. New chorological data for the Italian vascular Flora. Diversity, 2020, 12:22. https://doi.org/10.3390/d12010022[CrossRef]
- Galasso, G.; Domina, G.; Andreatta, S.; Argenti, E.; Bacchetta, G.; Bagella, S.; Banfi, E.; Barberis, D.; Bardi, S.; Barone, G.; Bartolucci, F.; Bertolli, A.; Biscotti, N.; Bonali, F.; Bonini, F.; Bonsanto, D.; Brundu, G.; Buono, S.; Caldarella, O.; Calvia, G.; Cambria, S.; Campus, G.; Caria, M.C.; Conti, F.; Coppi, A.; Dagnino, D.; Del Guacchio, E.; Di Gristina, E.; Farris, E.; Ferretti, G.; Festi, F.; Fois, M.; Furlani, F.; Gigante, D.; Guarino, R.; Gubellini, L.; Hofmann, N.; Iamonico, D.; Jiménez-Mejias, P.; La Rosa, A.; Laface, V.L.A.; Lallai, A.; Lazzaro, L.; Lonati, M.; Lozano, V.; Luchino, F.; Lupoletti, J.; Magrini, S.; Mainetti, A.; Marchetti, D.; Marenzi, P.; Marignani, M.; Martignoni, M.; Mei, G.; Menini, F.; Merli, M.; Mugnai, M.; Musarella, C.M.; Nicolella, G.; Noor Hussain, A.; Olivieri, N.; Orlandini, S.; Peccenini, S.; Peruzzi, L.; Pica, A.; Pilon, N.; Pinzani, L.; Pittarello, M.; Podda, L.; Probo, M.; Prosser, F.; Raffaelli, C.; Ravetto Enri, S.; Rivieccio, G.; Rosati, L.; Sarmati, S.; Scafi[CrossRef]
- Galasso, G.; Domina, G.; Angiolini, C.; Bacchetta, G.; Banfi, E.; Barberis, D.; Bardi, S.; Bartolucci, F.; Bonari, G.; Bovio, M.; Briozzo, I.; Brundu, G.; Buono, S.; Calvia, G.; Celesti-Grapow, L.; Cozzolino, A.; Cuena-Lombraña, A.; Curuzzi, M.; D’Amico, F.S.; Dagnino, D.; De Fine, G.; Fanfarillo, E.; Federici, A.; Ferraris, P.; Fiacchini, D.; Fiaschi, T.; Fois, M.; Gubellini, L.; Guidotti, E.; Hofmann, N.; Kindermann, E.; Laface, V.L.A.; Lallai, A.; Lanfredini, P.; Lazzaro, L.; Lazzeri, V.; Lonati, M.; Loreti, M.; Lozano, V.; Magrini, S.; Mainetti, A.; Marchini, M.; Marignani, M.; Martignoni, M.; Mei, G.; Minutillo, F.; Mondino, G.P.; Motti, R.; Musarella, C.M.; Nota, G.; Olivieri, N.; Pallanza, M.; Passalacqua, N.G.; Patera, G.; Pilon, N.; Pinzani, L.; Pittarello, M.; Podda, L.; Probo, M.; Enri, S.R.; Rosati, L.; Salerno, P.; Selvaggi, A.; Soldano, A.; Cocco, G.S.; Spampinato, G.; Stinca, A.; Terzi, M.; Tondi, G.; Turcato, C.; Wellstein, C.; Lastrucci, L. Notulae to the Italian alien vascular flora: 12. Ita[CrossRef]
- Stinca, A.; Musarella, C.M.; Rosati, L.; Laface, V.L.A.; Licht, W.; Fanfarillo, E.; Wagensommer, R.P.; Galasso, G.; Fascetti, S.; Esposito, A.; Fiaschi, T.; Nicolella, G.; Chianese, G.; Ciaschetti, G.; Salerno, G.; Fortini, P.; Di Pietro, R.; Perrino, E.V.; Angiolini, C.; De Simone, L.; Mei, G. Italian Vascular Flora: New Findings, Updates and Exploration of Floristic Similarities between Regions. Diversity. 2021, 13(11): 600. https://doi.org/10.3390/d13110600[CrossRef]
- Galasso, G.; Domina, G.; Andreatta, S.; Argenti, C.; Astuti, G.; Bacaro, G.; Bacchetta, G.; Bagella, S.; Banfi, E.; Barberis, D.; Bartolucci, F.; Bernardo, L.; Bonari, G.; Brundu, G.; Buccomino, G.; Calvia, G.; Cancellieri, L.; Capuano, A.; Celesti-Grapow, L.; Conti, F.; Cuena-Lombraña, A.; D’Amico, F.S.; De Fine, G.; de Simone, L.; Del Guacchio, E.; Emili, F.; Fanfarillo, E.; Fascetti, S.; Fiaschi, T.; Fois, M.; Fortini, P.; Gentili, R.; Giardini, M.; Hussain, A.N.; Iamonico, D.; Laface, V.L.A.; Lallai, A.; Lazzaro, L.; Lecis, A.P.; Ligato, E.; Loi, G.; Lonati, M.; Lozano, V.; Maccherini, S.; Mainetti, A.; Mascia, F.; Mei, G.; Menini, F.; Merli, M.; Montesano, A.; Mugnai, M.; Musarella, C.M.; Nota, G.; Olivieri, N.; Passalacqua, N.G.; Pinzani, L.; Pisano, A.; Pittarello, M.; Podda, L.; Posillipo, G.; Potenza, G.; Probo, M.; Prosser, F.; Quaglini, L.A.; Ravetto Enri, S.; Rivieccio, G.; Roma-Marzio, F.; Rosati, L.; Selvaggi, A.; Soldano, A.; Stinca, A.; Tasinazzo, S.; Tassone, S.; Terzi, M.; Vallariello, R.; V[CrossRef] [PubMed]
- Galasso, G.; Domina, G.; Angiolini, C.; Azzaro, D.; Bacchetta, G.; Banfi, E.; Barberis, D.; Barone, G.; Bartolucci, F.; Bertolli, A.; Bolpagni, R.; Bonari, G.; Bracchetti, L.; Calvia, G.; Campus, G.; Cancellieri, L.; Cavallaro, V.; Conti, F.; Cuena-Lombraña A.; D’Alessandro, E.; Dal Corso, G.; Dalla Vecchia, A.; De Natale, A.; Del Guacchio, E.; Di Gregorio, G.; Di Gristina, E.; Di Stefano, M.; Fanfarillo, E.; Federici, A.; Federici, G.; Ferretti, G.; Festi, F.; Fiaschi, T.; Filibeck, G.; Fois, M.; Gariboldi, L.; Gestri, G.; Gubellini, L.; Guiggi, A.; Hofmann, N.; Laface, V.L.A.; Lallai, A.; Lazzeri, V.; Lecis, A.P.; Lonati, M.; Lucchese, F.; Lupoletti, J.; Maestri, S.; Mainetti, A.; Mantino, F.; Mascia, F.; Masin, R.R..; Mei, G.; Merli, M.; Messina, A.; Musarella, C.M., Nota, G.; Olivieri, N.; Paura, B.; Pellegrini, R.; Pica, A.; Pittarello, M.; Podda, L.; Praleskouskaya, S.; Prosser, F.; Ratini, G.; Ravetto Enri, S.; Roma-Marzio, F.; Salerno, G.; Selvaggi, A.; Soldano, A.; Spampinato, G.; Stinca, A.; Tardell[CrossRef] [PubMed]
- Musarella, C.M. Solanum torvum Sw. (Solanaceae): a new alien species for Europe. Genet Resour Crop Evol 2020, 67: 515–522. https://doi.org/10.1007/s10722-019-00822-5
- Brunel, S.; Schrader, G.; Brundu, G.; Fried, G. Emerging invasive alien plants for the Mediterranean Basin. EPPO Bulletin. 2010, 40. 219 - 238. 10.1111/j.1365-2338.2010.02378.x.
- Auld, B.; Johnson, S.B. Invasive alien plant management. CAB Reviews 2014, 9 (037) 1-12.
- Downey, P.; Williams, M.; Whiffen, L.; Auld, B.; Hamilton, M.; Burley, A.; Turner, P. Managing Alien Plants for Biodiversity Outcomes—the Need for Triage. Invasive Plant Science and Management, 2010, 3(1), 1-11. https://doi.org/10.1614/IPSM-09-042.1[CrossRef]
- Blaalid, R.; Magnussen, K.; Westberg, N.B.; Navrud, S. A benefit-cost analysis framework for prioritization of control programs for well-established invasive alien species. NeoBiota, 2021, 68: 31-52. https://doi.org/10.3897/neobiota.68.62122[CrossRef]
- Rai, P.K. Environmental Degradation by Invasive Alien Plants in the Anthropocene: Challenges and Prospects for Sustainable Restoration. Anthr. Sci. 2022, 1, 5–28. https://doi.org/10.1007/s44177-021-00004-y[CrossRef]
- Comune di Catanzaro. Regolamento del Verde Pubblico e Privato. Settore Igiene Ambientale. Comune di Catanzaro. (appr. Consiglio Comunale nr. 161 del 22/12/2020). 2020, https://www.comune.catanzaro.it/files/ [accessed 4th May 2023].[CrossRef] [PubMed]
- Hulme, P.; Brundu, G.; Carboni, M.; Dehnen-Schmutz, K.; Early, R.; Dullinger, S.; Essl, F.; González-Moreno, P.; Groom, Q.; Kueffer, C.; Kühn, I.; Maurel, N.; Novoa, A.; Pergl, J.; Pyšek, P.; Seebens, H.; Tanner, R.; Touza, J.; van Kleunen, M.; Verbrugge, L. Integrating invasive species policies across ornamental horticulture supply-chains to prevent plant invasions. Journal of Applied Ecology. 2017, 55. 10.1111/1365-2664.12953.[CrossRef]
- Weidlich, E.; Flórido, F.; Sorrini, T.; Brancalion, P. Controlling invasive plant species in ecological restoration: A global review. Journal of Applied Ecology. 2020, 57. 10.1111/1365-2664.13656.[CrossRef]
- Searle, S.D. Acacia melanoxylon - a review of variation among planted trees, Australian Forestry, 2000, 63:2, 79-85, https://doi.org/10.1080/00049158.2000.10674818[CrossRef]
- Pinkard, E.; Beadle, C. Blackwood (Acacia melanoxylon R. Br.) plantation silviculture: A review. Australian Forestry, 2002, 65. 10.1080/00049158.2002.10674847.
- Hernández, L.; Martínez-Fernández, J.; Vázquez de la Cueva, A.; Cañellas, I. Assessing spatio-temporal rates, patterns and determinants of biological invasions in forest ecosystems. The case of Acacia species in NW Spain. Forest Ecology and Management, 2014, 329. 10.1016/j.foreco.2014.05.058.[CrossRef]
- Celesti-Grapow, L.; Capotorti, G.; Del Vico, E.; Lattanzi, E.; Tilia, A.; Blasi, C. The vascular flora of Rome, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology, 2013, 147 (4): 1059-1087, https://doi.org/10.1080/11263504. 2013.862315[CrossRef] [PubMed]
- Lazzaro, L.; Ferretti, G.; Galasso, G.; Lastrucci, L.; Foggi, B. Contributo alla conoscenza della flora esotica dell’Arcipelago Toscano, Italia. Natural History Sciences, 2013, 154 (1): 3-24. https://doi.org/10.4081/nhs.2013.3[CrossRef]
- Bogosavljević, S.; Zlatković, B. Two alien species of Bidens (Compositae), new to the flora of Serbia. Phytologia Balcanica: International Journal of Balkan Flora and Vegetation, 2015, 21, 129-138.
- Pamplona, J.d.P.; Souza, M.d.F.; Sousa, D.M.M.; de Mesquita, H.C.; Freitas, C.D.M.; Lins, H.A.; Barros Torres, S.; Silva, D.V. Seed germination of Bidens subalternans DC. exposed to different environmental factors. PLoS ONE, 2020, 15(5): e0233228. https://doi.org/10.1371/journal.pone.0233228
- Raimondo, F.; Spadaro, V. First finding in Sicily of Bidens subalternans (Asteraceae). Flora Mediterranea, 2017, 27(27), 267-273 [10.7320/FlMedit27.267].[CrossRef]
- Lamego, F.; Vidal, R.; Burgos, N.; Federizzi, L. Cross‐resistance of Bidens subalternans to acetolactate synthase inhibitors in Brazil. Weed Research, 2009, 49: 634-641. 10.1111/j.1365-3180.2009.00734.x.[CrossRef] [PubMed]
- Mendes, R.; Adegas, F.; Takano, H.; Vital Silva, V.F.; Machado, F.; Júnior, R. Multiple resistance to glyphosate and imazethapyr in Bidens subalternans. Ciência e Agrotecnologia, 2019, 43: 10.1590/1413-7054201943009919.[CrossRef]
- Tallent, N.; Watt, M. The Invasive Buddleja davidii (Butterfly Bush). The Botanical Review, 2009, 75. 292-325. 10.1007/s12229-009-9033-0.
- Jogan, J. When did Buddleja davidii become invasive in Slovenia? Natura Sloveniae, 2018, 20 (1): 5-17. http://www.dlib.si/details/URN:NBN:SI:doc-2U2OQCZ8[CrossRef]
- Raab-Straube E. von; Raus T. (eds.) Euro+Med-Checklist Notulae, 5. Willdenowia, 2015, 45: 449-464.[CrossRef] [PubMed]
- Nesom, G. L., Cucurbita, 2015, In: Flora of North America Editorial Committee. eds. Flora of North America North of Mexico [Online]. 22+ vols. New York and Oxford. 1993-2023, http://beta.floranorthamerica.org [accessed 4th June 2023].[CrossRef]
- Hernández-Rosales, H.S.; Castellanos-Morales, G.; Sánchez-de la Vega, G.; E. Aguirre-Planter, E.; Montes-Hernández, S.; Lira-Saade, R.; Eguiarte, L.E. Phylogeographic and population genetic analyses of Cucurbita moschata reveal divergence of two mitochondrial lineages linked to an elevational gradient. American Journal of Botany, 2020, 107(3): 1-16.
- Ronse, A.C.; Popper, Z.A.; Preston, J.C.; Watson, M.F. Taxonomic revision of European Apium L. s.l.: Helosciadium W.D.J.Koch restored. Plant Syst Evol, 2010, 287: 1-17. https://doi.org/10.1007/s00606-010-0284-3
- Walck, J.; Baskin, C.; Hidayati, S.; Baskin, J. Comparison of the seed germination of native and non‐native winter annual Apiaceae in North America, with particular focus on Cyclospermum leptophyllum naturalized from South America. Plant Species Biology, 2008, 23: 33 - 42. 10.1111/j.1442-1984.2008.00205.x.[CrossRef]
- Celesti-Grapow, L.; Alessandrini, A.; Arrigoni, P.V.; Banfi, E.; Bernardo, L.; Bovio, M.; Brundu, G. Cagiotti, M.R.; Camarda, I.; Carli, E.; Conti, F.; Fascetti, S.; Galasso, G.; Gubellini, L.; La Valva, V.; Lucchese, F.; Marchiori, S.; Mazzola, P.; Peccenini, S.; Poldini, L.; Pretto, F.; Prosser, F.; Siniscalco, C.; Villani, M.C.; Viegi, L.; Wilhalm, T.; Blasi C. Inventory of the non-native flora of Italy. Plant Biosystems, 2009, 143 (2): 386-430.[CrossRef]
- Pande, C.; Tewari, G.; Singh, C.; Singh, S. Essential oil composition of aerial parts of Cyclospermum leptophyllum (Pers.) Sprague ex Britton & P. Wilson. Nat Prod Res. 2011, 25(6): 592-5. https://doi.org/10.1080/14786419.2010.487190[CrossRef]
- Verloove, F.; Gullón, E. New records of interesting vascular plants (mainly xenophytes) in the Iberian Peninsula. II. Flora Mediterranea. 2012, 22. 5-25. 10.7320/FlMedit22.005.[CrossRef] [PubMed]
- Yildirim, N.; Terzioğlu, S.; Turna, I. Cyclospermum leptophyllum (Apiaceae): a new alien record for the flora of Turkey. Phytologia Balcanica, 2018, 24(2): 205-207.
- Ryff, L. Cyclospermum leptophyllum (Pers.) Sprague ex Britton & P. Wilson (Apiaceae), a new alien plant for Ukraine. Ukrainian Botanical Journal, 2020, 68. 581-584.
- Verloove, F.; Banfi, E.; Galasso, G. 1358. Cyclospermum leptophyllum (Pers.) Sprague ex Britton & P. Wilson (Apiaceae). Notulae: 1358-1363. Inf. Bot. It. 2007, 39 (2) 401-435.[CrossRef]
- Del Guacchio E. Integrazioni, aggiornamenti e note alla flora esotica della Campania. Informatore Botanico Italiano, 2015, 47(2): 147-154.
- Pacanoski, Z. Current situation with invasive Erigeron annuus (l.) Pers. (daisy fleabane) in the Republic of Macedonia. EPPO Bulletin, 2017, 47. 10.1111/epp.12368.
- Kudryavtseva, E.; Vinogradova, Y.; Viting, K.; Kozyreva, A.; Nefedova, A.; Petrash, E.; Stukalov, A.; Sheynova, A.; Reshetnikova, N. The Settlement of Erigeron annuus (L.) Pers. and Analysis of the Reasons for Reproductive Success. Russian Journal of Biological Invasions. 2020, 11. 225-237. 10.1134/S2075111720030054.[CrossRef]
- Pshegusov, R.; Nazranov, K.; Chadaeva, V.; Nazranov, B. Invasion of Erigeron annuus (L.) Pers. in the hay and pasture meadows of the Greater Caucasus: modeling of the current and predicted distribution. E3S Web of Conferences. 2020, 222. 04001. 10.1051/e3sconf/202022204001.
- Little, E.L. Names of New World cypresses (Cupressus). Phytologia, 1970, 20:429-445.
- Farjon, A. World Checklist and Bibliography of Conifers. Royal Botanical Gardens at Kew. 1998, Richmond, UK.
- Adams, R.P.; Bartel, J.A.; Price, R.A. A new genus, Hesperocyparis, for the cypresses of the western hemisphere. Phytolologia, 2009, 91(1): 160-179.
- Askew, G.R.; Schoenike, R.E. Identification of characteristic traits of two varieties of Arizona cypress. Silvae Genetica, 1982, 31: 158-160.
- Little, D.P. Evolution and Circumscription of the True Cypresses (Cupressaceae: Cupressus), Systematic Botany, 2006, 31(3): 461-480. http://dx.doi.org/10.1043/05-33.1[CrossRef]
- Adams, R. P.; Bartel, J. Geographic variation in Hesperocyparis (Cupressus) arizonica and H. glabra: RAPDs analysis. Phytologia, 2009, 91: 244-250.
- Eckenwalder, J.E. Cupressus, 1993, in: Flora of North America Editorial Committee. eds. Flora of North America North of Mexico [Online]. 22+ vols. New York and Oxford. 1993-2023, http://beta.floranorthamerica.org [accessed 4th June 2023].[CrossRef]
- Tropicos.org (ed.). Ligustrum ovalifolium. Flora of Pakistan. Missouri Botanical Garden. 2023, http://www.tropicos.org/Name/23000162 [accessed 17th June 2023].[CrossRef]
- Blood, K. Environmental weeds. A field guide for SE Australia. 2001, C. H. Jerram, Science Publishers. Mt. Waverly, Victoria. 226 pp.[CrossRef] [PubMed]
- Muyt, A. Bush invaders of south-east Australia. R. G. and F. J. Richardson, Meredith, Victoria. 2001, 194-196.[CrossRef] [PubMed]
- Whittemore, A.T. Mahonia, 1997, in: Flora of North America Editorial Committee. eds. Flora of North America North of Mexico [Online]. 22+ vols. New York and Oxford. 1993-2023, http://beta.floranorthamerica.org [accessed 4th June 2023].
- Ross, C.A.; Auge, H. Invasive Mahonia plants outgrow their native relatives. Plant Ecol., 2008, 199: 21-31. https://doi.org/10.1007/s11258-008-9408-z[CrossRef] [PubMed]
- Adriaens T.; Verschelde, P.; Cartuyvels, E.; D'hondt, B.; Vercruysse, E.; van Gompel, W.; Dewulf, E.; Provoost, S. A preliminary field trial to compare control techniques for invasive Berberis aquifolium in Belgian coastal dunes. NeoBiota, 2019, 53: 41-60. https://doi.org/10.3897/neobiota.53.38183[CrossRef]
- Kowarik, I.; von der Lippe, M.; Cierjacks, A. Prevalence of alien versus native species of woody plants in Berlin differs between habitats and at different scales. Preslia, 2013, 85: 113-132.
- Ferus, P.; Hoťka, P.; Košútová, D.; Konôpková, J. Invasions of alien woody plant taxa across a cluster of villages neighbouring the Mlyňany Arboretum (SW Slovakia). Folia Oecologica, 2020, 47 (2): 121-130. https://doi.org/10.2478/foecol-2020-0014
- Bovio, M. (ed.) Note di aggiornamento al volume Flora vascolare della Valle d’Aosta - 5. Revue Valdôtaine d’Histoire Naturelle, 2018, 72: 97-121.[CrossRef]
- Buccheri, M.; Boscutti, F.; Pellegrini, E.; Martini, F. La flora aliena nel Friuli Venezia Giulia. Gortania, 2019, 40: 7-78.[CrossRef]
- Galasso, G.; Domina, G.; Adorni, M.; Ardenghi, N.M.G.; Banfi, E.; Bedini, G.; Bertolli, A.; Brundu, G.; Calbi, M.; Cecchi, L.; Cibei, C.; D’Antraccoli, M.; De Bastiani, A.; Faggi, G.; Ghillani, L.; Iberite, M.; Latini, M.; Lazzeri, V.; Liguori, P.; Marhold, K.; Masin, R.; Mauri, S.; Mereu, G.; Nicolella, G.; Olivieri, N.; Peccenini, S.; Perrino, E.V.; Peruzzi, L.; Petraglia, A.; Pierini, B.; Prosser, F.; Roma-Marzio, F.; Romani, R.; Sammartino, F.; Selvaggi, A.; Signorile, G.; Stinca, A.; Verloove, F.; Nepi, C. Notulae to the Italian alien vascular flora: 1. Italian Botanist, 2016a, 1: 17-37. https://doi.org/10.3897/italianbotanist.1.8777
- Zhou, Z.; Gilbert, M.G.; Moraceae. In: Wu, Z.Y.; Raven, P.H.; Hong, D.Y. (eds.) Flora of China. Science Press. Beijing, Missouri Botanical Garden Press, St. Louis, 2003, 5: 21-73.[CrossRef]
- Galasso, G.; Domina, G.; Ardenghi, N.M.G.; Arrigoni, P.; Banfi, E.; Bartolucci, F.; Bonari, G.; Buccomino, G.; Ciaschetti, G.; Conti, F.; Coppi, A.; Di Cecco, V.; Di Martino, L.; Guiggi, A.; Lastrucci, L.; Leporatti, M.L.; López Tirado, J.; Maiorca, G.; Mossini, S.; Olivieri, N.; Pennesi, R.; Romiti, B.; Scoppola, A.; Soldano, A.; Stinca, A.; Verloove, F.; Villa M.; Nepi, C. Notulae to the Italian alien vascular flora: 2. Italian Botanist, 2016b, 2: 55–71. doi: 10.3897/italianbotanist.2.11144[CrossRef]
- Galasso, G.; Domina, G.; Ardenghi, N.M.G.; Assini, S.; Banfi, E.; Bartolucci, F.; Bigagli, V.; Bonari, G.; Bonivento, E.; Cauzzi, P.; D’Amico, F.S.; D’Antraccoli, M.; Dinelli, D.; Ferretti, G.; Gennai, M.; Gheza, G.; Guiggi, A.; Guzzon, F.; Iamonico, D.; Iberite, M.; Latini, M.; Lonati, M.; Mei, G.; Nicolella, G.; Olivieri, N.; Peccenini, S.; Peraldo, G.; Perrino, E.V.; Prosser, F.; Roma-Marzio, F.; Russo, G.; Selvaggi, A.; Stinca, A.; Terzi, M.; Tison, J.-M.; Vannini, J.; Verloove, F.; Wagensommer, R.P.; Wilhalm, T.; Nepi, C. Notulae to the Italian alien vascular flora: 3. Italian Botanist, 2017, 3: 49-71. https://doi.org/10.3897/italianbotanist.3.13126[CrossRef] [PubMed]
- Banfi, E.; Galasso, G.; Bonali, F.; Leandri, F. Notula 387 (Morus indica). In: Galasso, G.; Banfi, E. (eds.) Notulae ad plantas advenas Longobardiae spectantes: 7 (365-397), 2018, 40: 45-46.[CrossRef]
- Wolin, C. L.; Galen, C.; Watkins, L. The Breeding System and Aspects of Pollination Effectiveness in Oenothera speciosa (Onagraceae). The Southwestern Naturalist, 1984, 29 (1): 15-20. https://doi.org/10.2307/3670765[CrossRef]
- Wagner, W.L. Oenothera, 2021, in: Flora of North America Editorial Committee. eds. Flora of North America North of Mexico [Online]. 22+ vols. New York and Oxford. 1993-2023, http://beta.floranorthamerica.org [accessed 4th June 2023].
- Bonifazi A.; Pacini, M.; Mancini, E. The Spreading in Europe of the Non-Indigenous Species Oenothera speciosa Nutt. Might Be a Threat to the Autochthonous Moth Macroglossum stellatarum (Linnaeus, 1758)? A New Case Study from Italy. Diversity, 2022, 14 (9): 743. https://doi.org/10.3390/d14090743[CrossRef]
- Colaone, M. Prunus serotina: l’albero più invasivo mai giunto in Insubria? Terra Insubre, 2017, 83: 76-87.[CrossRef] [PubMed]
- Starfinger, U. Introduction and naturalization of Prunus serotina in central Europe. 1997, 161-171. In: Brock, J.H.; Wade, M.; Pyšek, P.; Green, D. Plant Invasions: studies from North America and Europe. Blackhuys Publishers. Leiden. The Netherlands.[CrossRef]
- Pairon, M.; Chabrerie, O.; Mainer, C.; Jacquemart, A.-L. Sexual regeneration traits linked to black cherry (Prunus serotina Ehrh.) invasiveness. Acta Oecologica. 2006a, 30. 238-247. 10.1016/j.actao.2006.05.002.
- Pairon, M.; Jonard, M.; Jacquemart, A.-L. Modeling seed dispersal of black cherry (Prunus serotina Ehrh) an invasive forest tree: how microsatellites can help? Canadian Journal of Forest Research, 2006b, 36: 1385-1394.[CrossRef]
- Pairon, M. Ecology and population genetics of an invasive forest tree species: Prunus serotina Ehrh. Ph.D. Dissertation, 2007, Universite Catholique de Louvain.[CrossRef]
- Vanhellemont, M.; Verheyen, K.; De Keersmaeker, L.; Vandekerkhove, K.; Hermy, M. Does Prunus serotina act as an aggressive invader in areas with a low propagule pressure? Biological Invasions, 2009, 11. 1451-1462. 10.1007/s10530-008-9353-8.[CrossRef]
- Forte, T.; Brundu, G.; Celesti-Grapow, L.; Siniscalco, C.; Barni, E. Prunus serotina in Italy: A challenging candidate for the national list of Priority Invasive Alien Species. Plant Biosystems, 2019, 153. 1-10. 10.1080/11263504.2019.1666173.[CrossRef]
- Lance, R.W.; Zika, P.F. Pyracantha, 2014, in: Flora of North America Editorial Committee. eds. Flora of North America North of Mexico [Online]. 22+ vols. New York and Oxford. 1993-2023, http://beta.floranorthamerica.org [accessed 4th June 2023].
- Tsue-Chih, K.; Spongberg, S.A. Pyracantha. In: Wu, Z.Y.; Raven, P.H.; Hong, D.Y. (eds.) Flora of China. Science Press. Beijing, Missouri Botanical Garden Press, St. Louis, 2003, 9: 108-109.[CrossRef]
- Nesom, G.L. Pyracantha (Rosaceae) naturalized in Texas and the Southeastern United States. Phytoneuron, 2010, 2: 1-6.[CrossRef]
- Clement, E.J. Problems over identification of Pyracantha bushes. BSBY News, 2012, 119: 53-55.[CrossRef] [PubMed]
- Jocou, A.I.; Gandullo, R. Sinopsis de las especies de Pyracantha (Rosaceae, Maloideae) naturalizadas en Argentina. Boletín De La Sociedad Argentina De Botánica, 2019, 54 (4): 599-616. https://doi.org/10.31055/1851.2372.v54.n4.24970[CrossRef]
- Chari, L.; Martin, G.; Steenhuisen, S.; Adams, L.; Clark, V. Biology of Invasive Plants 1. Pyracantha angustifolia (Franch.) C.K. Schneid. Invasive Plant Science and Management, 2020, 13 (3): 120-142. https://doi.org/10.1017/inp.2020.24
- Osawa, T.; Akasaka, M. Influence of aboveground removal on an invasive perennial herb Rudbeckia laciniata L. (Compositae) in June: difference in belowground size (Scientific Evaluations), Japanese Journal of Conservation Ecology, 2007, 12 (2): 151-155. https://doi.org/10.18960/hozen.12.2_151
- Jędrzejczak, E.; Klichowska, E.; Nobis, M. Effect of Rudbeckia laciniata invasion on soil seed banks of different types of meadow communities. Sci Rep, 2022, 12: 10965 https://doi.org/10.1038/s41598-022-14681-1[CrossRef]
- Urbatsch, L.E.; Cox P.B., Rudbeckia, 2006, in: Flora of North America Editorial Committee. eds. Flora of North America North of Mexico [Online]. 22+ vols. New York and Oxford. 1993-2023, http://beta.floranorthamerica.org. [accessed 4th June 2023].[CrossRef]
- Särkinen, T.; Poczai, P.; Barboza, G.E.; van der Weerden, G.M.; Baden, M.; Knapp, S. A revision of the Old World Black Nightshades (Morelloid clade of Solanum L., Solanaceae). PhytoKeys, 2018, 106: 1-223. https://doi.org/10.3897/phytokeys. 106.21991[CrossRef]
- Leslie, A.C. The occurrence of Solanum nigrum L. × S. sarrachoides Sendtn. in Britain. Watsonia, 1978, 12: 29-32.[CrossRef]
- Stace, C.; Preston, C.D.; Pearman, D.A. Hybrid flora of the British Isles. Botanical Society of Britain and Ireland, 2015, Bristol.
- Galasso, G.; Domina, G.; Argenti, C.; Bajona, E.; Banfi, E.; Barberis, D.; Barone, G.; Bartolucci, F.; Biscotti, N.; Bonali, F.; Bonifazio, C.; Bonsanto, D.; Buldrini, F.; Cannucci, S.; Cozzolino, A.; De Natale, A.; Del Guacchio, E.; Di Gristina, E.; Fiaschi, T.; Lallai, A.; Lonati, M.; Lucchese, F.; Lupoletti, J.; Marchi, N.; Motti, R.; Nota, G.; Pica, A.; Pittarello, M.; Potenza, G.; Ratini, G.; Rota, F.; Santi, F.; Santini, C.; Sarigu, M.; Selvaggi, A.; Simonazzi, M.; Tardella, F.M.; Tripi, S.; Vetromile, R.; Lastrucci, L. Notulae to the Italian alien vascular flora: 15. Italian Botanist, 2023a, 15: 77-89. https://doi.org/10.3897/italianbotanist.15.105794
- Goldblatt, P.; Manning, J. Systematics and biology of the Cape genus Sparaxis (Iridaceae). Strelitzia 32, 2013, South African National Biodiversity Institute, Pretoria.
- Rejmanek, M.; Randall, J. Invasive alien plants in California: 1993 summary and comparison with other areas in North America. Madroño, 1994, 41. 161-177.[CrossRef]
- El Mokni, R.; El Aouni, M.H. Découverte de Sparaxis tricolore, Sparaxis tricolor (Curt.) Ker-Gawl. (Iridaceae Juss.) pour la Flore de Tunisie: une adventice naturalisée. Le Monde des Plantes, 2011, 505: 11-14.
- Lohr, M.; Keighery, G. The status and distribution of alien plants on the islands of the south coast of Western Australia. Conservation Science Western Australia, 2014, 9: 181-200.[CrossRef] [PubMed]
- Podda, L.; Lazzeri, V.; Mayoral, O.; Bacchetta, G. The Checklist of the Sardinian Alien Flora: an Update. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2012, 40(2), 14-21. https://doi.org/10.15835/nbha4028225[CrossRef]
- Goldblatt, P. Flora of Southern Africa. 1999, 7 (2:1): 150-168. https://ucjeps.berkeley.edu/eflora/eflora_display.php?tid=45019[CrossRef]
- Goldblatt, P. The genus Sparaxis. J. S. African Bot. 1969, 35: 219-252.
- de Lange, P.J.; de Lange, T.J.P.; de Lange F.J.T. New exotic plant records, and range extensions for naturalised plants, in the northern North Island, New Zealand. Auckland Botanical Society Journal, 2005, 60(2): 130-147.[CrossRef]
- Pellegrini, M. Wandering throughout South America: Taxonomic revision of Tradescantia subg. Austrotradescantia (D.R.Hunt) M.Pell. (Commelinaceae). PhytoKeys, 2018, 104: 1-97. 10.3897/phytokeys.104.28484.[CrossRef] [PubMed]
- Merli, M.; Boscolo, D.; Carbini, D.; Bergamo Decarli, G.; Fenaroli, F.; Fiandri, F.; Salvo R. (eds.) Rassegna di segnalazioni notevoli riguardanti il Trentino-Alto Adige comparse nel forum Acta Plantarum. Acta Plantarum Notes, 2017, 5: 28-30. ArabaFenice, Boves (CN).[CrossRef]
- Buldrini, F.; Gentilini, M.; Bruni, C.; Santini, C.; Alessandrini, A.; Bosi, G. Flora vascolare spontanea della città di Modena: analisi del centro storico. Natural History Sciences, 2020, 7 (1): 3-56. 10.4081/nhs.2020.443
- Dulamsuren, C.; Hauck, M.; Nyambayar, S.; Bader, M.; Dalaikhuu, U.; Shagjjav, O.; Leuschner, C. Performance of Siberian elm (Ulmus pumila) on steppe slopes of the northern Mongolian mountain taiga: Drought stress and herbivory in mature trees. Environmental and Experimental Botany, 2009, 66. 18-24. 10.1016/j.envexpbot. 2008.12.020.[CrossRef]
- Hirsch, H.; Wypior, C.; von Wehrden, H.; Wesche, K.; Renison, D.; Hensen, I. Germination performance of native and non-native Ulmus pumila populations. NeoBiota, 2012, 15. 53-68. 10.3897/neobiota.15.4057.[CrossRef]
- Zalapa, J.E.; Brunet, J.; Guries, R.P. Patterns of hybridization and introgression between invasive Ulmus pumila (Ulmaceae) and native U. rubra. Am J Bot, 2009, 96 (6): 1116-1128. https://doi.org/10.3732/ajb.0800334
- Bertolasi, B.; Leonarduzzi, C.; Piotti, A.; Leonardi, S.; Zago, L.; Gui, L.; Gorian, F.; Vanetti, I.; Binelli, G. A last stand in the Po valley: genetic structure and gene flow patterns in Ulmus minor and U. pumila. Ann Bot. 2015, 115 (4): 683-692. https://doi.org/10.1093/aob/mcu256[CrossRef]
- Mainetti, A.; Lonati, M. Preliminary notes about the occurrence of Ulmus pumila L. in Aosta Valley. Rev. Valdôtaine Hist. Nat., 2017, 71: 29-39.[CrossRef] [PubMed]
Copyright
© 2025 by authors and Scientific Publications. This is an open access article and the related PDF distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Article Metrics
If you find this article cited by other articles, please click the button to add a citation.