Abstract
The integration of LiDAR and Artificial Intelligence (AI) has revolutionized feature detection in urban environments. LiDAR systems, which utilize pulsed laser emissions and reflection measurements, produce detailed 3D maps of urban landscapes. When combined with AI, this data enables accurate identification of urban features such as buildings, green spaces, and infrastructure. This synergy is [...] Read more.
The integration of LiDAR and Artificial Intelligence (AI) has revolutionized feature detection in urban environments. LiDAR systems, which utilize pulsed laser emissions and reflection measurements, produce detailed 3D maps of urban landscapes. When combined with AI, this data enables accurate identification of urban features such as buildings, green spaces, and infrastructure. This synergy is crucial for enhancing urban development, environmental monitoring, and advancing smart city governance. LiDAR, known for its high-resolution 3D data capture capabilities, paired with AI, particularly deep learning algorithms, facilitates advanced analysis and interpretation of urban areas. This combination supports precise mapping, real-time monitoring, and predictive modeling of urban growth and infrastructure. For instance, AI can process LiDAR data to identify patterns and anomalies, aiding in traffic management, environmental oversight, and infrastructure maintenance. These advancements not only improve urban living conditions but also contribute to sustainable development by optimizing resource use and reducing environmental impacts. Furthermore, AI-enhanced LiDAR is pivotal in advancing autonomous navigation and sophisticated spatial analysis, marking a significant step forward in urban management and evaluation. The reviewed paper highlights the geometric properties of LiDAR data, derived from spatial point positioning, and underscores the effectiveness of machine learning algorithms in object extraction from point clouds. The study also covers concepts related to LiDAR imaging, feature selection methods, and the identification of outliers in LiDAR point clouds. Findings demonstrate that AI algorithms, especially deep learning models, excel in analyzing high-resolution 3D LiDAR data for accurate urban feature identification and classification. These models leverage extensive datasets to detect patterns and anomalies, improving the detection of buildings, roads, vegetation, and other elements. Automating feature extraction with AI minimizes the need for manual analysis, thereby enhancing urban planning and management efficiency. Additionally, AI methods continually improve with more data, leading to increasingly precise feature detection. The results indicate that the pulse emitted by continuous wave LiDAR sensors changes when encountering obstacles, causing discrepancies in measured physical parameters.