Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access September 13, 2023 Endnote/Zotero/Mendeley (RIS) BibTeX

A Comparative Study of Attention-Based Transformer Networks and Traditional Machine Learning Methods for Toxic Comments Classification

Abstract With the rapid growth of online communication platforms, the identification and management of toxic comments have become crucial in maintaining a healthy online environment. Various machine learning approaches have been employed to tackle this problem, ranging from traditional models to more recent attention-based transformer networks. This paper aims to compare the performance of attention-based [...] Read more.
With the rapid growth of online communication platforms, the identification and management of toxic comments have become crucial in maintaining a healthy online environment. Various machine learning approaches have been employed to tackle this problem, ranging from traditional models to more recent attention-based transformer networks. This paper aims to compare the performance of attention-based transformer networks with several traditional machine learning methods for toxic comments classification. We present an in-depth analysis and evaluation of these methods using a common benchmark dataset. The experimental results demonstrate the strengths and limitations of each approach, shedding light on the suitability and efficacy of attention-based transformers in this domain.
Article

Query parameters

Keyword:  Sihao Wang

View options

Citations of

Views of

Downloads of