Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access January 10, 2025 Endnote/Zotero/Mendeley (RIS) BibTeX

Artificial Immune Systems: A Bio-Inspired Paradigm for Computational Intelligence

Abstract Artificial Immune Systems (AIS) are bio-inspired computational frameworks that emulate the adaptive mechanisms of the human immune system, such as self/non-self discrimination, clonal selection, and immune memory. These systems have demonstrated significant potential in addressing complex challenges across optimization, anomaly detection, and adaptive system control. This paper provides a [...] Read more.
Artificial Immune Systems (AIS) are bio-inspired computational frameworks that emulate the adaptive mechanisms of the human immune system, such as self/non-self discrimination, clonal selection, and immune memory. These systems have demonstrated significant potential in addressing complex challenges across optimization, anomaly detection, and adaptive system control. This paper provides a comprehensive exploration of AIS applications in domains such as cybersecurity, resource allocation, and autonomous systems, highlighting the growing importance of hybrid AIS models. Recent advancements, including integrations with machine learning, quantum computing, and bioinformatics, are discussed as solutions to scalability, high-dimensional data processing, and efficiency challenges. Core algorithms, such as the Negative Selection Algorithm (NSA) and Clonal Selection Algorithm (CSA), are examined, along with limitations in interpretability and compatibility with emerging AI paradigms. The paper concludes by proposing future research directions, emphasizing scalable hybrid frameworks, quantum-inspired approaches, and real-time adaptive systems, underscoring AIS's transformative potential across diverse computational fields.
Figures
PreviousNext
Article
Open Access March 08, 2025 Endnote/Zotero/Mendeley (RIS) BibTeX

Advancing Preference Learning in AI: Beyond Pairwise Comparisons

Abstract Preference learning plays a crucial role in AI applications, particularly in recommender systems and personalized services. Traditional pairwise comparisons, while foundational, present scalability challenges in large-scale systems. This study explores alternative elicitation methods such as ranking, numerical ratings, and natural language feedback, alongside a novel hybrid framework that [...] Read more.
Preference learning plays a crucial role in AI applications, particularly in recommender systems and personalized services. Traditional pairwise comparisons, while foundational, present scalability challenges in large-scale systems. This study explores alternative elicitation methods such as ranking, numerical ratings, and natural language feedback, alongside a novel hybrid framework that dynamically integrates these approaches. The proposed methods demonstrate improved efficiency, reduced cognitive load, and enhanced accuracy. Results from simulated user studies reveal that hybrid approaches outperform traditional methods, achieving a 40% reduction in user effort while maintaining high predictive accuracy. These findings open pathways for deploying user-centric, scalable preference learning systems in dynamic environments.
Review Article

Query parameters

Keyword:  Anil Kumar Jonnalagadda

View options

Citations of

Views of

Downloads of