Abstract
Artificial Immune Systems (AIS) are bio-inspired computational frameworks that emulate the adaptive mechanisms of the human immune system, such as self/non-self discrimination, clonal selection, and immune memory. These systems have demonstrated significant potential in addressing complex challenges across optimization, anomaly detection, and adaptive system control. This paper provides a [...] Read more.
Artificial Immune Systems (AIS) are bio-inspired computational frameworks that emulate the adaptive mechanisms of the human immune system, such as self/non-self discrimination, clonal selection, and immune memory. These systems have demonstrated significant potential in addressing complex challenges across optimization, anomaly detection, and adaptive system control. This paper provides a comprehensive exploration of AIS applications in domains such as cybersecurity, resource allocation, and autonomous systems, highlighting the growing importance of hybrid AIS models. Recent advancements, including integrations with machine learning, quantum computing, and bioinformatics, are discussed as solutions to scalability, high-dimensional data processing, and efficiency challenges. Core algorithms, such as the Negative Selection Algorithm (NSA) and Clonal Selection Algorithm (CSA), are examined, along with limitations in interpretability and compatibility with emerging AI paradigms. The paper concludes by proposing future research directions, emphasizing scalable hybrid frameworks, quantum-inspired approaches, and real-time adaptive systems, underscoring AIS's transformative potential across diverse computational fields.