Abstract
Business merchants and investors in Nigeria are interested in the foreign exchange volatility forecasting accuracy performance because they need information on how volatile the exchange rate will be in the future. In the paper, we compared Exponential Generalized Autoregressive Conditional Heteroskedasticity with order p=1 and q= 1, (EGARCH (1,1)) and Recurrent Neural Network (RNN) based on long [...] Read more.
Business merchants and investors in Nigeria are interested in the foreign exchange volatility forecasting accuracy performance because they need information on how volatile the exchange rate will be in the future. In the paper, we compared Exponential Generalized Autoregressive Conditional Heteroskedasticity with order p=1 and q= 1, (EGARCH (1,1)) and Recurrent Neural Network (RNN) based on long short term memory (LSTM) model with the combinations of p = 10 and q = 1 layers to model the volatility of Nigerian exchange rates. Our goal is to determine the preferred model for predicting Nigeria’s Naira exchange rate volatility with Euro, Pounds and US Dollars. The dataset of monthly exchange rates of the Nigerian Naira to US dollar, Euro and Pound Sterling for the period December 2001 – August 2023 was extracted from the Central Bank of Nigeria Statistical Bulletin. The model efficiency and performance was measured with the Mean Squared Error (MSE) criteria. The results indicated that the Nigeria exchange rate volatility is asymmetric, and leverage effects are evident in the results of the EGARCH (1, 1) model. It was observed also that there is a steady increase in the Nigeria Naira exchange rate with the euro, pounds sterling and US dollar from 2016 to its highest peak in 2023. Result of the comparative analysis indicated that, EGARCH (1,1) performed better than the LSTM model because it provided a smaller MSE values of 224.7, 231.3 and 138.5 for euros, pounds sterling and US Dollars respectively.
Article