Abstract
Over the past few decades, cardiovascular disease and related complications have surpassed all others as the important causes of death on a universal scale. At the moment, they are the important cause of mortality universal, including in India. It is important to know how to find cardiovascular problems early so that patients get better care and prices go down. This project utilizes the UCI Heart [...] Read more.
Over the past few decades, cardiovascular disease and related complications have surpassed all others as the important causes of death on a universal scale. At the moment, they are the important cause of mortality universal, including in India. It is important to know how to find cardiovascular problems early so that patients get better care and prices go down. This project utilizes the UCI Heart Disease Dataset to develop ML and DL models capable of detecting cardiac diseases. Heart illness was categorized using Convolutional Neural Network (CNN) models, which are able to detect intricate patterns in supplied data. A confusion matrix rating, an F1-score, a ROC curve, accuracy, precision, and recall were some of the measures used to grade the model. It did much better than the Neural Network, Deep Neural Network (DNN), and Gradient Boosted Trees (GBT) models, with 91.71% accuracy, 88.88% precision, 82.75% memory, and 85.70% F1-score. Comparative study showed that CNN was the most accurate model. Other models had different balances between accuracy and recall. The experiment results show that the optional CNN model is a decent way to identify cardiovascular disease. This means that it could be used in healthcare systems to find diseases earlier and treat patients better.
Article