Abstract
The field of sentiment analysis is a crucial aspect of natural language processing (NPL) and is essential in discovering the emotional undertones within the text data and, hence, capturing public sentiments over a variety of issues. In this regard, this study suggests a deep learning technique for sentiment categorization on a Twitter dataset that is based on Long Short-Term Memory (LSTM) [...] Read more.
The field of sentiment analysis is a crucial aspect of natural language processing (NPL) and is essential in discovering the emotional undertones within the text data and, hence, capturing public sentiments over a variety of issues. In this regard, this study suggests a deep learning technique for sentiment categorization on a Twitter dataset that is based on Long Short-Term Memory (LSTM) networks. Preprocessing is done comprehensively, feature extraction is done through a bag of words method, and 80-20 data is split using training and testing. The experimental findings demonstrate that the LSTM model outperforms the conventional models, such as SVM and Naïve Bayes, with an F1-score of 99.46%, accuracy of 99.13%, precision of 99.45%, and recall of 99.25%. Additionally, AUC-ROC and PR curves validate the model’s effectiveness. Although, it performs well the model consumes heavy computational resources and longer training time. In summary, the results show that deep learning performs well in sentiment analysis and can be used to social media monitoring, customer feedback evaluation, market sentiment analysis, etc.
Review Article