Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access October 19, 2021 Endnote/Zotero/Mendeley (RIS) BibTeX

A Ligthweight Wayfinding Assistance System for IoT Applications

Abstract In this paper, we propose to design an indoor sign detection system for industry 4.0. In order to implement the proposed system, we proposed a lightweight deep learning-based architecture based on MobileNet which can be run on embedded devices used to detect and recognize indoor landmarks signs in order to assist blind and sighted during indoor navigation. We apply various operations in order to [...] Read more.
In this paper, we propose to design an indoor sign detection system for industry 4.0. In order to implement the proposed system, we proposed a lightweight deep learning-based architecture based on MobileNet which can be run on embedded devices used to detect and recognize indoor landmarks signs in order to assist blind and sighted during indoor navigation. We apply various operations in order to minimize the network size as well as computation complexity. Internet of things (IoT) presents a connection between internet and the surroundings objects. IoT is characterized to connect physical objects with their numerical identities and enables them to connect with each other. This technique creates a kind of bridge between the physical world and the virtual world. The paper provides a comprehensive overview of a new method for a set of landmark indoor sign objects based on deep convolutional neural network (DCNN) for internet of things applications.
Figures
PreviousNext
Article
Open Access October 17, 2021 Endnote/Zotero/Mendeley (RIS) BibTeX

Understanding Traffic Signs by an Intelligent Advanced Driving Assistance System for Smart Vehicles

Abstract Recent technologies have made life smarter. vehicles are vital components in daily life that are getting smarter for a safer environment. Advanced Driving Assistance Systems (ADAS) are widely used in today's vehicles. It has been a revolutionary approach to make roads safer by assisting the driver in difficult situations like collusion, or assistance in respecting road rules. ADAS is composed of a [...] Read more.
Recent technologies have made life smarter. vehicles are vital components in daily life that are getting smarter for a safer environment. Advanced Driving Assistance Systems (ADAS) are widely used in today's vehicles. It has been a revolutionary approach to make roads safer by assisting the driver in difficult situations like collusion, or assistance in respecting road rules. ADAS is composed of a huge number of sensors and processing units to provide a complete overview of the surrounding objects to the driver. In this paper, we introduce a road signs classifier for an ADAS to recognize and understand traffic signs. This classifier is based on a deep learning technique, and, in particular, it uses Convolutional Neural Networks (CNN). The proposed approach is composed of two stages. The first stage is a data preprocessing technique to filter and enhance the quality of the input images to reduce the processing time and improve the recognition accuracy. The second stage is a convolutional CNN model with a skip connection that allows passing semantic features to the top of the network in order to allow for better recognition of traffic signs. Experiments have proved the performance of the CNN model for traffic sign classification with a correct recognition rate of 99.75% on the German traffic sign recognition benchmark GTSRB dataset.
Figures
PreviousNext
Article

Query parameters

Keyword:  Riadh Ayachi

View options

Citations of

Views of

Downloads of