Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access December 27, 2021 Endnote/Zotero/Mendeley (RIS) BibTeX

Financial Implications of Predictive Analytics in Vehicle Manufacturing: Insights for Budget Optimization and Resource Allocation

Abstract Factory owners and vehicle manufacturers increasingly opt for predictive analytics to inform their decisions. While predictive analytics have been proven to provide insights into the initiation of maintenance measures before a machine actually fails, the right models and features could have a significant impact on the budget spent and resources allocated. This means that financially oriented [...] Read more.
Factory owners and vehicle manufacturers increasingly opt for predictive analytics to inform their decisions. While predictive analytics have been proven to provide insights into the initiation of maintenance measures before a machine actually fails, the right models and features could have a significant impact on the budget spent and resources allocated. This means that financially oriented questions need to at least partially guide the decisions in the planning phase of data science projects. Data-driven approaches will play an increasingly important role, but only a few of the firms that were confident performed logistic regression models for predictive maintenance. Also, from the available knowledge, data-driven classification models connecting vehicle component failures and the occurrence of delays at the assembly line have not been published. This paper utilizes a real-world data-driven approach using classification models in predictive analytics by vehicle manufacturers and thereby links the financial implications of such data science projects to their results. We expand the existing literature on predictive maintenance and possess a unique dataset of newly launched series of vehicles, presented as-is. Our research context is of interest to researchers and practitioners in the automotive industry that manage and plan the final vehicle assembly with just-in-time principles, factoring the consequences of component failures on the assembly process. Key findings of this paper highlight that while minor tweaking of the models is possible, their potential input in decision-making processes for budget optimization is limited.
Figures
PreviousNext
Review Article
Open Access October 30, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

Towards Autonomous Analytics: The Evolution of Self-Service BI Platforms with Machine Learning Integration

Abstract Self-service business intelligence (BI) platforms have become essential applications for exploring, analyzing, and visualizing business data in various domains. Here, we envisage that the business intelligence platform will perform automatic and autonomous data analytics with minimal to no user interaction. We aim to offer a data-driven, intelligent, and scalable infrastructure that amplifies the [...] Read more.
Self-service business intelligence (BI) platforms have become essential applications for exploring, analyzing, and visualizing business data in various domains. Here, we envisage that the business intelligence platform will perform automatic and autonomous data analytics with minimal to no user interaction. We aim to offer a data-driven, intelligent, and scalable infrastructure that amplifies the advantages of BI systems and discovers hidden and complex insights from very large business datasets, which a business analyst can miss during manual exploratory data analysis. Towards our future vision of autonomous analytics, we propose a collective machine learning model repository with an integration layer for user-defined analytical goals within the BI platform. The proposed architecture can effectively reduce the cognitive load on users for repetitive tasks, democratizing data science expertise across data workers and facilitating a less experienced user community to develop and use advanced machine learning and statistical algorithms.
Figures
PreviousNext
Review Article
Open Access November 16, 2023 Endnote/Zotero/Mendeley (RIS) BibTeX

Zero Carbon Manufacturing in the Automotive Industry: Integrating Predictive Analytics to Achieve Sustainable Production

Abstract This charge-ahead paper suggests that transitioning the automotive industry towards a zero-carbon ecosystem from material to end-of-life can be accomplished through disruptive zero-carbon manufacturing in the broad area of all-electric vehicle production technology. To accomplish zero carbon emission automotive manufacturing in the vehicle assembly domain, future paradigms must converge on the [...] Read more.
This charge-ahead paper suggests that transitioning the automotive industry towards a zero-carbon ecosystem from material to end-of-life can be accomplished through disruptive zero-carbon manufacturing in the broad area of all-electric vehicle production technology. To accomplish zero carbon emission automotive manufacturing in the vehicle assembly domain, future paradigms must converge on the decoupling of carbon dioxide emissions from automobile manufacturing and use the design, processing, and manufacturing conditions. The envisioned zero carbon emission vehicle manufacturing domain consists of two complementary components: (a) making more efficient use of energy and (b) reducing carbon in energy use. This paper presents the status of key scientific and technological advancements to bring the manufacturing model of today to a zero-carbon ecosystem for the entire automotive industry of tomorrow. This paper suggests the groundbreaking application of dynamic and distributed predictive scheduling algorithms and open sensing and visualization technology to meet the zero carbon emission vehicle manufacturing goals. Power-aware high-performance computing clusters have recently become a viable solution for sustainable production. Advances in scalable and self-adaptive monitoring, predictive analytics, timeline-based machine learning, and digital replica of cyber-physical systems are also seen co-evolving in the zero carbon manufacturing future. These methods are inspired by initiatives to decouple gross domestic product growth and energy-related carbon dioxide emissions. Stakeholders could co-design and implement shared roadmaps to transition the automotive manufacturing sector with relevant societal and environmental benefits. The automated mobility sector offers a program, an industry-leading example of transforming an automotive production facility to carbon neutrality status. The conclusions from this paper challenge automotive manufacturers to engage in industry offsetting and carbon tax programs to drive continuous improvement and circular vehicle flows via a multi-directional zero-carbon smart grid.
Figures
PreviousNext
Review Article
Open Access January 10, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

The Impact of Instant Credit Card Issuance and Personalized Financial Solutions on Enhancing Customer Experience in the Digital Banking Era

Abstract In today's fast-changing world, digital has become a way of life in every single field, and it is affecting all industries by providing multi-channel connectivity with people. In the banking industry, moving to the digital age allows for more improvements in customer-related operations and transaction-related operations within a day. These studies are from the perspective of customers. Customers [...] Read more.
In today's fast-changing world, digital has become a way of life in every single field, and it is affecting all industries by providing multi-channel connectivity with people. In the banking industry, moving to the digital age allows for more improvements in customer-related operations and transaction-related operations within a day. These studies are from the perspective of customers. Customers prefer the flexibility of using digital financial services. Banking clients are commonly given technology-related services, whether they are online or not. Now, banks are focused on providing instant credit card issuance and personalized financial solution services to their clients. They are responsible for managing mass affluent clients who conduct transactions approximately the same as mass retail clients. Providing personalized services on time to individual end users will significantly enhance customer value with the banks. Customers who use the bank digitally perform more operations than those who go to the branch. Thus, they become more valuable clients for the banks. This strategic approach to the digitization process takes place in this fast-changing environment, and the major steps of this journey will be explained in the next chapters [1].
Figures
PreviousNext
Review Article

Query parameters

Keyword:  Shakir Syed

View options

Citations of

Views of

Downloads of