Abstract
This charge-ahead paper suggests that transitioning the automotive industry towards a zero-carbon ecosystem from material to end-of-life can be accomplished through disruptive zero-carbon manufacturing in the broad area of all-electric vehicle production technology. To accomplish zero carbon emission automotive manufacturing in the vehicle assembly domain, future paradigms must converge on the [...] Read more.
This charge-ahead paper suggests that transitioning the automotive industry towards a zero-carbon ecosystem from material to end-of-life can be accomplished through disruptive zero-carbon manufacturing in the broad area of all-electric vehicle production technology. To accomplish zero carbon emission automotive manufacturing in the vehicle assembly domain, future paradigms must converge on the decoupling of carbon dioxide emissions from automobile manufacturing and use the design, processing, and manufacturing conditions. The envisioned zero carbon emission vehicle manufacturing domain consists of two complementary components: (a) making more efficient use of energy and (b) reducing carbon in energy use. This paper presents the status of key scientific and technological advancements to bring the manufacturing model of today to a zero-carbon ecosystem for the entire automotive industry of tomorrow. This paper suggests the groundbreaking application of dynamic and distributed predictive scheduling algorithms and open sensing and visualization technology to meet the zero carbon emission vehicle manufacturing goals. Power-aware high-performance computing clusters have recently become a viable solution for sustainable production. Advances in scalable and self-adaptive monitoring, predictive analytics, timeline-based machine learning, and digital replica of cyber-physical systems are also seen co-evolving in the zero carbon manufacturing future. These methods are inspired by initiatives to decouple gross domestic product growth and energy-related carbon dioxide emissions. Stakeholders could co-design and implement shared roadmaps to transition the automotive manufacturing sector with relevant societal and environmental benefits. The automated mobility sector offers a program, an industry-leading example of transforming an automotive production facility to carbon neutrality status. The conclusions from this paper challenge automotive manufacturers to engage in industry offsetting and carbon tax programs to drive continuous improvement and circular vehicle flows via a multi-directional zero-carbon smart grid.
Review Article