Abstract
The effects on the elderly are disproportionately Alzheimer’s disease (AD) is one of the most prevalent and chronic types of dementia. Alzheimer's disease (AD), a fatal illness that can harm brain structures and cells long before symptoms appear, is currently incurable and incurable. Using brain MRI pictures from a publicly accessible Kaggle dataset, this study suggests a prediction model based [...] Read more.
The effects on the elderly are disproportionately Alzheimer’s disease (AD) is one of the most prevalent and chronic types of dementia. Alzheimer's disease (AD), a fatal illness that can harm brain structures and cells long before symptoms appear, is currently incurable and incurable. Using brain MRI pictures from a publicly accessible Kaggle dataset, this study suggests a prediction model based on Convolutional Neural Networks (CNNs) to help with the early detection of Alzheimer's disease. Four levels of dementia have been applied to the 6,400 photos in the collection: not demented, slightly demented, moderately demented, and considerably mildly demented. Pixel normalization, class balancing utilizing data augmentation techniques, and picture scaling to 128×128 pixels were all part of a thorough workflow for data preparation. To improve the gathering of spatial dependence in volumetric MRI data, a 3D convolutional neural network (CNN) architecture was used. We used important performance measures including F1-score, recall, accuracy, precision, and log loss to gauge the model's effectiveness. A review of the available data indicates that the total F1-score, accuracy, recall, and precision were 99.0%, 99.0%, and 99.38%, respectively. The findings demonstrate the model's potential for practical use in early AD diagnosis and establish its robustness with the help of confusion matrix analysis and performance curves.