Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access January 20, 2025 Endnote/Zotero/Mendeley (RIS) BibTeX

Deep Learning-Based Sentiment Analysis: Enhancing IMDb Review Classification with LSTM Models

Abstract Sentiment analysis, a vital aspect of natural language processing, involves the application of machine learning models to discern the emotional tone conveyed in textual data. The use case for this type of problem is where businesses can make informed decisions based on customer feedback, identify the sentiments of their employees, and make decisions on hiring or retention, or for that matter, [...] Read more.
Sentiment analysis, a vital aspect of natural language processing, involves the application of machine learning models to discern the emotional tone conveyed in textual data. The use case for this type of problem is where businesses can make informed decisions based on customer feedback, identify the sentiments of their employees, and make decisions on hiring or retention, or for that matter, classify a text based on its topic like whether it is about a particular subject like physics or chemistry as is useful in search engines. The model leverages a sequential architecture, transforms words into dense vectors using an Embedding layer, and captures intricate sequential patterns with two Long Short-Term Memory (LSTM) layers. This model aims to effectively classify sentiments in text data using a 50-dimensional embedding dimension and 20 % dropout layers. The use of rectified linear unit (ReLU) activations enhances non-linearity, while the SoftMax activation in the output layer aligns with the multi-class nature of sentiment analysis. Both training and test accuracy were well over 80%.
Figures
PreviousNext
Article
Open Access April 16, 2024 Endnote/Zotero/Mendeley (RIS) BibTeX

Revolutionizing Automotive Supply Chain: Enhancing Inventory Management with AI and Machine Learning

Abstract Consumer behavior is evolving, demanding a wide range of products with fast shipping and reliable service. The automotive aftermarket industry, worth billions, requires efficient distribution systems to stay competitive. Manufacturers strive to balance growth with product and service excellence. Distributors and retailers face the challenge of maintaining competitive pricing while keeping [...] Read more.
Consumer behavior is evolving, demanding a wide range of products with fast shipping and reliable service. The automotive aftermarket industry, worth billions, requires efficient distribution systems to stay competitive. Manufacturers strive to balance growth with product and service excellence. Distributors and retailers face the challenge of maintaining competitive pricing while keeping inventory levels low. An adequate supply chain and accurate product data are crucial for product availability and reducing stock issues. This ultimately increases profits and customer satisfaction.
Figures
PreviousNext
Article
Open Access November 15, 2023 Endnote/Zotero/Mendeley (RIS) BibTeX

Predictive Failure Analytics in Critical Automotive Applications: Enhancing Reliability and Safety through Advanced AI Techniques

Abstract Failure prediction can be achieved through prognostics, which provides timely warnings before failure. Failure prediction is crucial in an effective prognostic system, allowing preventive maintenance actions to avoid downtime. The prognostics problem involves estimating the remaining useful life (RUL) of a system or component at any given time. The RUL is defined as the time from the current time [...] Read more.
Failure prediction can be achieved through prognostics, which provides timely warnings before failure. Failure prediction is crucial in an effective prognostic system, allowing preventive maintenance actions to avoid downtime. The prognostics problem involves estimating the remaining useful life (RUL) of a system or component at any given time. The RUL is defined as the time from the current time to the time of failure. The goal is to make accurate predictions close to the failure time to provide early warnings. J S Grewal and J. Grewal provide a comprehensive definition of RUL in their paper "The Kalman Filter approach to RUL estimation." A process is a quadruple (XU f P), where X is the state space, U is the control space, P is the set of possible paths, and f represents the transition between states. The process involves applying control values to change the system's state over time.
Figures
PreviousNext
Article
Open Access December 27, 2021 Endnote/Zotero/Mendeley (RIS) BibTeX

Leveraging AI and ML for Enhanced Efficiency and Innovation in Manufacturing: A Comparative Analysis

Abstract The manufacturing industry has embraced modern technologies such as big data, machine learning, and artificial intelligence. This paper examines AI and machine learning developments in the manufacturing industry, comparing current practices and data-driven projects. It aims better to understand these technologies and their potential benefits and challenges. The research identifies opportunities [...] Read more.
The manufacturing industry has embraced modern technologies such as big data, machine learning, and artificial intelligence. This paper examines AI and machine learning developments in the manufacturing industry, comparing current practices and data-driven projects. It aims better to understand these technologies and their potential benefits and challenges. The research identifies opportunities for innovative business solutions and explores industry practices and research results. The paper focuses on implementation rather than technical aspects, aiming to enhance knowledge in this area.
Figures
PreviousNext
Review Article

Query parameters

Keyword:  Vishwanadham Mandala

View options

Citations of

Views of

Downloads of