Abstract
Recent technologies have made life smarter. vehicles are vital components in daily life that are getting smarter for a safer environment. Advanced Driving Assistance Systems (ADAS) are widely used in today's vehicles. It has been a revolutionary approach to make roads safer by assisting the driver in difficult situations like collusion, or assistance in respecting road rules. ADAS is composed of a [...] Read more.
Recent technologies have made life smarter. vehicles are vital components in daily life that are getting smarter for a safer environment. Advanced Driving Assistance Systems (ADAS) are widely used in today's vehicles. It has been a revolutionary approach to make roads safer by assisting the driver in difficult situations like collusion, or assistance in respecting road rules. ADAS is composed of a huge number of sensors and processing units to provide a complete overview of the surrounding objects to the driver. In this paper, we introduce a road signs classifier for an ADAS to recognize and understand traffic signs. This classifier is based on a deep learning technique, and, in particular, it uses Convolutional Neural Networks (CNN). The proposed approach is composed of two stages. The first stage is a data preprocessing technique to filter and enhance the quality of the input images to reduce the processing time and improve the recognition accuracy. The second stage is a convolutional CNN model with a skip connection that allows passing semantic features to the top of the network in order to allow for better recognition of traffic signs. Experiments have proved the performance of the CNN model for traffic sign classification with a correct recognition rate of 99.75% on the German traffic sign recognition benchmark GTSRB dataset.
Article