Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access December 27, 2023 Endnote/Zotero/Mendeley (RIS) BibTeX

Understanding the Fundamentals of Digital Transformation in Financial Services: Drivers and Strategic Insights

Abstract The current financial services sector is realising considerable changes in its operations due to development in technology and embracing of digital platforms. This evolution is changing the established concepts of business, consumers and channels of delivery of services. Financial services firms are changing the way they work through digital transformation due to developments in technology, [...] Read more.
The current financial services sector is realising considerable changes in its operations due to development in technology and embracing of digital platforms. This evolution is changing the established concepts of business, consumers and channels of delivery of services. Financial services firms are changing the way they work through digital transformation due to developments in technology, changes in customer needs, and an increase in emphasis on sustainability. Understanding the opportunities, risks, and new trends in digital transformation is the focus of this paper. Opportunities include efficient real-time decision-making processes, increased transparency and better process controls, which are balanced by the threats of change management, dubious organization-technology fit, and high implementation costs. The study also examines recent advancements, including the application of machine learning and artificial intelligence, developments in mobile and online banking, integration of blockchain, and increasing focus on security and personalised banking. A literature review yields some findings from different studies on rural financial services, the evolution of the blockchain, drivers of digital transformation, cloud-based learning approaches, and emerging sustainability practices. All of these results suggest that more strategic planning, analytics, and more focus on ensuring that organisational objectives are met with transformations should be pursued. Hence, this research findings add to the existing literature in determining how innovative and digital technologies are likely to transform the financial services sector and advance sustainability.
Figures
PreviousNext
Review Article
Open Access December 19, 2024 Endnote/Zotero/Mendeley (RIS) BibTeX

Intelligent Detection of Injection Attacks via SQL Based on Supervised Machine Learning Models for Enhancing Web Security

Abstract The most prevalent technique behind security data breaches exists through SQL Injection Attacks. Organizations and individuals suffer from sensitive information exposure and unauthorized entry when attackers take advantage of SQL injection (SQLi) attack vulnerability’s severe risks. Static and heuristic defense methods remain conventional detection tools for previous SQL injection attacks study's [...] Read more.
The most prevalent technique behind security data breaches exists through SQL Injection Attacks. Organizations and individuals suffer from sensitive information exposure and unauthorized entry when attackers take advantage of SQL injection (SQLi) attack vulnerability’s severe risks. Static and heuristic defense methods remain conventional detection tools for previous SQL injection attacks study's foundation is a detection system developed using the Gated Recurrent Unit (GRU) network, which attempts to efficiently identify SQL Injection attacks (SQLIAs). The suggested Gated Recurrent Unit model was trained using an 80:20 train-test split, and the results showed that SQL injection attacks could be accurately identified with a precision rate of 97%, an accuracy rate of 96.65%, a recall rate of 92.5%, and an F1-score of 94%. The experimental results, together with their corresponding confusion matrix analysis and learning curves, demonstrate resilience and outstanding generalization ability. The GRU model outperforms conventional machine learning (ML) models, including K-Nearest Neighbor’s (KNN), and Support Vector Machine (SVM), in terms of identifying sequential patterns in SQL query data. Recurrent neural architecture proves effective in the detection of SQLi attacks through its ability to provide secure protection for contemporary web applications.
Figures
PreviousNext
Article

Query parameters

Keyword:  Laxmana Murthy Karaka

View options

Citations of

Views of

Downloads of