Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access October 26, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

Asymptotic Properties of the Semigroup Generated by a Continuous Interval Map

Abstract The article's purpose is twofold. First, we wish to draw attention to the insufficiently known field of continuous-time difference equations. These equations are paradigmatic for modeling complexity and chaos. Even the simplest equation , easily leads to complex dynamics, its solutions are perfectly suited to simulate strong nonlinear phenomena such as large-to-small cascades of structures, [...] Read more.
The article's purpose is twofold. First, we wish to draw attention to the insufficiently known field of continuous-time difference equations. These equations are paradigmatic for modeling complexity and chaos. Even the simplest equation , easily leads to complex dynamics, its solutions are perfectly suited to simulate strong nonlinear phenomena such as large-to-small cascades of structures, intermixing, formation of fractals, etc. Second, in the main body of the article we present a small but very important part of the theory behind the above equation marked by . Just as the discrete-time analog of this equation induces the one-dimensional dynamical system on some interval , so the equation induces the infinite-dimensional dynamical system on the space of functions . In the latter case, not only are the long-term behaviours of solutions critically dependent on the limit behaviour of the sequence (as in the discrete case) but also on the internal structure of as . Assuming to be continuous, we consider the iterations of as the semigroup generated by on the space of continuous maps, and introduce the notion of a limit semigroup for in a wider map space in order to investigate asymptotic properties of . We construct a limit semigroup in the space of upper semicontinuous maps. This enables us to describe both of the aforementioned aspects of our interest around the iterations of.
Figures
PreviousNext
Article

Query parameters

Keyword:  O. M. Sharkovsky

View options

Citations of

Views of

Downloads of