Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access December 27, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

The Role of AI Driven Clinical Research in Medical Device Development: A Data Driven Approach to Regulatory Compliance and Quality Assurance

Abstract This essay explores how AI can enhance clinical research and, particularly, its pivotal role in the development of medical devices. A data-driven approach to medical device development that can streamline regulatory compliance and quality assurance is discussed. Methods that generate insights from pre-stage data and utilize it during development are detailed. The effectiveness of this approach in [...] Read more.
This essay explores how AI can enhance clinical research and, particularly, its pivotal role in the development of medical devices. A data-driven approach to medical device development that can streamline regulatory compliance and quality assurance is discussed. Methods that generate insights from pre-stage data and utilize it during development are detailed. The effectiveness of this approach in compliance audits, 510(k) submissions, and quality system audits - reducing time, effort, and risks is analyzed. The findings are illustrated with practical examples and takeaway recommendations. When reading a scientific article, how many times have you judged the quality of the research by looking at the methodology section? Artificial intelligence algorithms can be developed with the most robust and innovative technology, but if they are not properly validated, they will be worthless in the eyes of regulatory authorities. Conversely, outdated and simplistic models can still gain regulatory clearance if robustness is effectively demonstrated. For better or worse, ethics, economics, and robustness are often sacrificed in the constant government struggle to keep up with the technological edge of AI development. The slow crawl of lawmakers is constant in every field. Automating small tasks can save time and reduce risks when playing catch-up with a changing regulatory framework so the rest of the AI development can continue uninhibitedly. This dives into using FDA open data to collaborate with a food and drug law company and develop several bottom-up initiatives that supply knowledge needed for regulatory compliance and quality systems development. Methods that input pre-stage data and output actionable insights as models are provided. By sharing these resources and advice as academic researchers, efficiency in streamlining processes is maximized, thereby letting more time and resources be allocated to the actual development [1].
Figures
PreviousNext
Case Report
Open Access December 27, 2021 Endnote/Zotero/Mendeley (RIS) BibTeX

Advancements in Smart Medical and Industrial Devices: Enhancing Efficiency and Connectivity with High-Speed Telecom Networks

Abstract Emerging smart medical instruments combined with advanced smart industrial equipment facilitate the collection of vast volumes of critical data. This data not only enables significantly more accurate and cost-effective diagnosis and maintenance but also enriches the datasets available for AI algorithms, leading to improved insights and outcomes. The integration of high-speed and ultra-reliable [...] Read more.
Emerging smart medical instruments combined with advanced smart industrial equipment facilitate the collection of vast volumes of critical data. This data not only enables significantly more accurate and cost-effective diagnosis and maintenance but also enriches the datasets available for AI algorithms, leading to improved insights and outcomes. The integration of high-speed and ultra-reliable telecommunications infrastructure is crucial, as it supports the cloud model. This model allows for off-device aggregation in the cloud, which effectively offloads infrastructure demands and provides an extended runway for future technological improvements before the deployment of the next generation of devices. However, in certain scenarios, latency and bandwidth limitations present significant challenges. These limitations require that a substantial amount of AI and machine learning processing is conducted directly on the transmitted data, which places rigorous demands on both the processing subsystems and the communications links themselves. The current project directly addresses the accelerator side of this multifaceted issue. It will carry out comprehensive end-to-end demonstrations leveraging pilot 5G networks and telemedicine facilities, collaborating closely with major industry participants to showcase the capabilities and potential of this innovative technology. This collaborative effort is essential to pushing the boundaries of what is possible in smart medical instruments and industrial applications [1].
Figures
PreviousNext
Review Article

Query parameters

Keyword:  Sai Teja Nuka

View options

Citations of

Views of

Downloads of