Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access December 27, 2021 Endnote/Zotero/Mendeley (RIS) BibTeX

Predictive Analytics and Deep Learning for Logistics Optimization in Supply Chain Management

Abstract Managing supply chains efficiently has become a major concern for organizations. One of the important factors to optimize in supply chain management is logistics. The advent of technology and the increase in data availability allow for the enhancement of the efficiency of logistics in a supply chain. This discussion focuses on the blending of analytics with innovation in logistics to improve the [...] Read more.
Managing supply chains efficiently has become a major concern for organizations. One of the important factors to optimize in supply chain management is logistics. The advent of technology and the increase in data availability allow for the enhancement of the efficiency of logistics in a supply chain. This discussion focuses on the blending of analytics with innovation in logistics to improve the operations of a supply chain. An approach is presented on how predictive analytics can be used to improve logistics operations. In order to analyze big data in logistics effectively, an artificial intelligence computational technique, specifically deep learning, is employed. Two case studies are illustrated to demonstrate the practical employability of the proposed technique. This reveals the power and potential of using predictive analytics in logistics to project various KPI values ahead in the future based on the contemporary data from the logistics operations; sheds light on the innovative technique of employing deep learning through deep learning-based predictive analytics in logistics; suggests incorporating innovative techniques like deep learning with predictive analytics to develop an accurate forecasting technique in logistics and optimize operations and prevent disruption in the supply chain. The network of supply chains has become more complex, necessitating the need for the latest technological advancements. The sectors that have gained a fair amount of attention for the application of technology to optimize their operations are manufacturing, healthcare, aerospace, and the automotive industry. A little attention has been diverted to the logistics sector; many describe how analytics and artificial intelligence can be used in the logistics sector to achieve higher optimization. Currently, significant research has been done in optimizing logistics operations. Nevertheless, with the explosive volume of historical data being produced by the logistics operations of an organization, there is a great opportunity to learn valuable insights from the data accumulated over time for more long-term strategic planning. To develop the logistics operations in an organization, the use of historical data is essential to understand the trends in the operations. For example, regular maintenance planning and resource allocation based on trends are long-term activities that will not affect logistics operations immediately but can affect the business’s strategic planning in the long run. A predictive analysis technique employed on historical data of logistics can narrow down conclusions based on the future trends of logistics operations. Thus, the technique can be used to prevent the disruption of the supply chain.
Figures
PreviousNext
Review Article
Open Access January 10, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

Composable Infrastructure: Towards Dynamic Resource Allocation in Multi-Cloud Environments

Abstract To ensure maximum flexibility, service providers offer a variety of computing options with regard to CPU, memory capacity, and network bandwidth. At the same time, the efficient operation of current cloud applications requires an infrastructure that can adjust its configuration continuously across multiple dimensions, which are generally not statically predefined. Our research shows that these [...] Read more.
To ensure maximum flexibility, service providers offer a variety of computing options with regard to CPU, memory capacity, and network bandwidth. At the same time, the efficient operation of current cloud applications requires an infrastructure that can adjust its configuration continuously across multiple dimensions, which are generally not statically predefined. Our research shows that these requirements are hardly met with today's typical public cloud and management approaches. To provide such a highly dynamic and flexible execution environment, we propose the application-driven autonomic management of data center resources as the core vision for the development of a future cloud infrastructure. As part of this vision and the required gradual progress toward it, we present the concept of composable infrastructure and its impact on resource allocation for multi-cloud environments. We introduce relevant techniques for optimizing resource allocation strategies and indicate future research opportunities [1]. Many cloud service providers offer computing instances that can be configured with arbitrary capacity, depending on the availability of certain hardware resources. This level of configurability provides customers with the desired flexibility for executing their applications. Because of the large number of such prerequisite instances with often varying characteristics, service consumers must invest considerable effort to set up or reconfigure elaborate resource provisioning systems. Most importantly, they must differentiate the loads to be distributed between jobs that need to be executed versus placeholder jobs, i.e., jobs that trigger the automatic elasticity functionality responsible for resource allocator reconfiguration. Operations research reveals that the optimization of resource allocator reconfiguration strategies is a fundamentally difficult problem due to its NP-hardness. Despite these challenges, dynamic resource allocation in multi-clouds is becoming increasingly important since modern Internet-based service settings are dispersed across multiple providers [2].
Figures
PreviousNext
Review Article
Open Access November 19, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

Analyzing Behavioral Trends in Credit Card Fraud Patterns: Leveraging Federated Learning and Privacy-Preserving Artificial Intelligence Frameworks

Abstract We investigate and analyze the trends and behaviors in credit card fraud attacks and transactions. First, we perform logical analysis to find hidden patterns and trends, then we leverage game-theoretical models to illustrate the potential strategies of both the attackers and defenders. Next, we demonstrate the strength of industry-scale, privacy-preserving artificial intelligence solutions by [...] Read more.
We investigate and analyze the trends and behaviors in credit card fraud attacks and transactions. First, we perform logical analysis to find hidden patterns and trends, then we leverage game-theoretical models to illustrate the potential strategies of both the attackers and defenders. Next, we demonstrate the strength of industry-scale, privacy-preserving artificial intelligence solutions by presenting the results from our recent exploratory study in this respect. Furthermore, we describe the intrinsic challenges in the context of developing reliable predictive models using more stringent protocols, and hence the need for sector-specific benchmark datasets, and provide potential solutions based on state-of-the-art privacy models. Finally, we conclude the paper by discussing future research lines on the topic, and also the possible real-life implications. The paper underscores the challenges in creating robust AI models for the banking sector. The results also showcase that privacy-preserving AI models can potentially augment sharing capabilities while mitigating liability issues of public-private sector partnerships [1].
Figures
PreviousNext
Review Article
Open Access December 27, 2019 Endnote/Zotero/Mendeley (RIS) BibTeX

The Role of Neural Networks in Advancing Wearable Healthcare Technology Analytics

Abstract Neural networks are bringing a transformation in wearable healthcare technology analytics. These networks are able to analyze a vast amount of data to help in making decisions concerning patient care. Advancements in deep learning have brought neural networks to the forefront, making data analytics a straightforward process. This study will help in unveiling the use of ICT and AI in medical [...] Read more.
Neural networks are bringing a transformation in wearable healthcare technology analytics. These networks are able to analyze a vast amount of data to help in making decisions concerning patient care. Advancements in deep learning have brought neural networks to the forefront, making data analytics a straightforward process. This study will help in unveiling the use of ICT and AI in medical healthcare technology, crawling through some industry giants. Wearable Healthcare Technologies are becoming more popular every day. These technologies facilitate collecting, monitoring, and sharing every vital aspect of the human body necessary for diagnosing and treating an ailment. At the advent of global digitization, health data storage and systematic analysis are taking shape to ensure better diagnostics, preventive, and predictive healthcare. Healthcare analytics powered by neural networks can significantly improve health outcomes, maximizing individuals' potential and quality of life. The breadth and possibilities of connected devices are getting wider. From personal activity monitoring to quantifying every bit of health statistics, connected devices are making an impact in measurement, management, and manipulation. In healthcare, early diagnosis could be a lifesaver. Data analytics can help in a big way to make moves and predictions to save lives. We are in another phase of the digitization era, "Neural Network and Wearable Healthcare Technology Analytics." A neural network could be conceived as an adaptive system made up of a large number of neurons connected in multiple layers. A neural network processes data in a similar way as the human brain does. Using a collection of algorithms, for many neural networks, objects are composed of 'input' and 'output' layers along with the layers of the neural network.
Figures
PreviousNext
Review Article

Query parameters

Keyword:  Zakera Yasmeen

View options

Citations of

Views of

Downloads of