Abstract
Emerging smart medical instruments combined with advanced smart industrial equipment facilitate the collection of vast volumes of critical data. This data not only enables significantly more accurate and cost-effective diagnosis and maintenance but also enriches the datasets available for AI algorithms, leading to improved insights and outcomes. The integration of high-speed and ultra-reliable [...] Read more.
Emerging smart medical instruments combined with advanced smart industrial equipment facilitate the collection of vast volumes of critical data. This data not only enables significantly more accurate and cost-effective diagnosis and maintenance but also enriches the datasets available for AI algorithms, leading to improved insights and outcomes. The integration of high-speed and ultra-reliable telecommunications infrastructure is crucial, as it supports the cloud model. This model allows for off-device aggregation in the cloud, which effectively offloads infrastructure demands and provides an extended runway for future technological improvements before the deployment of the next generation of devices. However, in certain scenarios, latency and bandwidth limitations present significant challenges. These limitations require that a substantial amount of AI and machine learning processing is conducted directly on the transmitted data, which places rigorous demands on both the processing subsystems and the communications links themselves. The current project directly addresses the accelerator side of this multifaceted issue. It will carry out comprehensive end-to-end demonstrations leveraging pilot 5G networks and telemedicine facilities, collaborating closely with major industry participants to showcase the capabilities and potential of this innovative technology. This collaborative effort is essential to pushing the boundaries of what is possible in smart medical instruments and industrial applications [1].
Review Article