Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access November 16, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

AI-Driven Automation in Monitoring Post-Operative Complications Across Health Systems

Abstract Artificial intelligence systems have been previously used to predict post-operative complications in small studies and single institutions. Here we developed a robust artificial intelligence model that predicts the risk of having cardiac, pulmonary, thromboembolic, or septic complications after elective, non-cardiac, non-ambulatory surgery. We combined structured and unstructured electronic health [...] Read more.
Artificial intelligence systems have been previously used to predict post-operative complications in small studies and single institutions. Here we developed a robust artificial intelligence model that predicts the risk of having cardiac, pulmonary, thromboembolic, or septic complications after elective, non-cardiac, non-ambulatory surgery. We combined structured and unstructured electronic health record data from 3.5 million surgical encounters from 25 medical centers between 2009 and 2017. Our neural network model predicted postoperative comorbidities 15 to 80 times faster than classical models. As such, our model can be used to assess the risk of having a specific complication postoperatively in a fraction of a second. With our model, we believe clinicians will be able to identify high-risk surgical patients and use their good judgment to mitigate upcoming risks, ultimately improving patient outcomes [1].
Figures
PreviousNext
Case Report
Open Access December 27, 2019 Endnote/Zotero/Mendeley (RIS) BibTeX

Predictive Analytics in Biologics: Improving Production Outcomes Using Big Data

Abstract Biopharmaceuticals, or biologics, are a burgeoning sector in the pharmaceutical industry, predicted to reach $239.4 billion by 2025. This unparalleled growth is often attributed to the enhanced specificity offered by large molecules over small molecules. The large size of the constituent proteins necessitates the continuous implementation of big data predictive analytics to elucidate the most [...] Read more.
Biopharmaceuticals, or biologics, are a burgeoning sector in the pharmaceutical industry, predicted to reach $239.4 billion by 2025. This unparalleled growth is often attributed to the enhanced specificity offered by large molecules over small molecules. The large size of the constituent proteins necessitates the continuous implementation of big data predictive analytics to elucidate the most effective candidates in the lead optimization process. These same methodologies can be applied, and with the advent of machine learning and automated predictive analytics, this is becoming an increasingly facile task, to the augmentation and optimization of the downstream production processes that comprise the majority of the development cost of any biologic. In this work, big data from cell line generation, product and process design, and large-scale lead validation studies have been used to compare the applicability of simple statistical models against these black-box approaches for the rapid acceleration of enzymes to the pilot plant stage. This research can be expanded upon to exploit the big datasets generated as part of the progression of biologics through the development pipeline to further optimize production outcomes. Over the coming months, data from the project will be used to probe which approaches are amenable to which processes and, as a result, more amenable to various economic simulations. The computed optimization objective for the HIT must include the cost of acquiring, storing, and analyzing data to construct these predictive models, alongside the expected commercial reward of choosing an optimally ranked candidate. In this vein, perspective must be taken in the probable future price, capability outputs, and ownership issues of increasingly sophisticated data analysis software as superstructures become more frequent. It is frequently stated that decisions made to reduce production costs are data-driven, but that is not because more economically or energetically costly experiments or production methods are employed; to truly evaluate production steps, dynamic energy, and economic models need to become more commonplace. Conversion of process quality approaches from large questionnaires, risk analysis, and expert opinion-driven methods to statistical and thus more reliable approaches is an area of future research in analytics used herein.
Figures
PreviousNext
Review Article
Open Access December 27, 2019 Endnote/Zotero/Mendeley (RIS) BibTeX

Revolutionizing Patient Care and Digital Infrastructure: Integrating Cloud Computing and Advanced Data Engineering for Industry Innovation

Abstract This work details how the integration of cloud computing and advanced data engineering can innovate and reshape patient care and digital infrastructure. In the healthcare sector, cloud services offer the necessary support to generate digitally-oriented services and service kits. These services can contain high levels of availability, low levels of latency, and on-demand scaling capabilities, while [...] Read more.
This work details how the integration of cloud computing and advanced data engineering can innovate and reshape patient care and digital infrastructure. In the healthcare sector, cloud services offer the necessary support to generate digitally-oriented services and service kits. These services can contain high levels of availability, low levels of latency, and on-demand scaling capabilities, while following the strictest data protection laws and regulations. On the other hand, these services can be combined with data engineering techniques to construct an ecosystem that enhances and adds an optimized data layer on any cloud environment. This ecosystem includes technologies to acquire, process, and manage healthcare data while respecting all regulatory obligations and institutions and can be part of a comprehensive digitalization strategy. The objective is to augment the healthcare services that the industry offers by leveraging healthcare data and AI technologies. Designed services, processes, and technologies can be described either as industry-agnostic services or healthcare-specific services that process and manage electronic healthcare records (EHR). Industry-agnostic services offer a set of tools and methodologies to conduct optimized data experiments. The goal is to exploit any variety, velocity, volume, and veracity of medical data. Healthcare-specific services offer a set of tools and methodologies to connect to any common EHR vendor in a privacy-preserving manner. Participating companies are thus able to hold, share, and make use of healthcare data in real-time. The proposed architecture can be transformative for the healthcare industry, opening up and facilitating experimentation on new and scalable service models. The transition to a more digital health approach would help overcome the limits encountered in traditional settings. Limitations in the availability of healthcare facilities and healthcare professionals have underpinned the increasing share of telemedicine in the care process. However, the record-keeping of the patients that undergo care outside of traditional healthcare facilities is often missing and can severely influence the continuity of treatment. Identifying new methods to implement disease prevention and early intervention processes is crucial to avoid more extensive treatment and to support those on multiple line therapies. For chronic patients, having a service available that monitors the state of health and intervenes when parameters go off the wanted range is crucial. However, the same patients are the most under the influence of the decision of care providers; a second opinion might be given remotely which the patient can access at any time on-demand. To address these different kinds of services, an ecosystem composed of a dictionary's worth data layer is outlined, able to live and operate seamlessly in any cloud environment. This future work's envisioned outcome is the rapid evolution and re-definition of the European healthcare landscape.
Figures
PreviousNext
Review Article
Open Access December 27, 2019 Endnote/Zotero/Mendeley (RIS) BibTeX

Data Engineering Frameworks for Optimizing Community Health Surveillance Systems

Abstract A Changing World Demands Optimized Health Surveillance Systems – and How Data Engineering Can Help There is a growing urgency to manage the public health and emergency response practices effectively today, in light of complex and emerging health threats. Fortunately, a host of new tools, including big and streaming data sources, methods such as machine learning, new types of hardware like [...] Read more.
A Changing World Demands Optimized Health Surveillance Systems – and How Data Engineering Can Help There is a growing urgency to manage the public health and emergency response practices effectively today, in light of complex and emerging health threats. Fortunately, a host of new tools, including big and streaming data sources, methods such as machine learning, new types of hardware like blockchain or secure enclaves, and means of data storage and retrieval, have emerged. But, with these innovations comes a grand challenge: how to blend with, and adapt them to, the traditional public health practices. The long-in-place infrastructures and protocols to protect and ensure the welfare of communities are in need of change, or at least update, to enhance their marked longevity of impact directly on the health outcomes and community wellbeing they were designed to fortify. It is in this vein that the essay is written and composed. The investigation in this essay is to query what, particularly, might be the aspects and influences of the emerging veritable cornucopia of new data engineering frameworks that are either being developed specifically for health surveillance and wellness, or are available to be co opted from devices and services already thriving in the current market and research milieu. Knowing what these ways may be could well aid in molding their uptake and spread, ensuring their beneficial impacts on those communities who stand to gain the most. The essay is divided into several key segments. After this introduction, section two details the research methods. In the section that follows, the maximum health outcome potentials of these novel frameworks are reviewed. Part four of the essay takes a more critical approach, addressing how the success of these methods may be hindered and future research avenues. Lastly, the concluding information suggests some actions to take to aid best suit the implementation of these ways, and suggests some thoughts for further research after the completion of these inquiriestrand [1].
Figures
PreviousNext
Case Report

Query parameters

Keyword:  Venkata Krishna Azith Teja Ganti

View options

Citations of

Views of

Downloads of