Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access December 27, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

Advancing Pain Medicine with AI and Neural Networks: Predictive Analytics and Personalized Treatment Plans for Chronic and Acute Pain Managements

Abstract There is a growing body of evidence that the number of individuals suffering from chronic and acute pain is under-reported and the burden of the veteran, aging, athletic, and working populations is rising. Current pain management is limited by our capacity to collaborate with individuals continuing normal daily functions and self-administration of pain treatments outside of traditional healthcare [...] Read more.
There is a growing body of evidence that the number of individuals suffering from chronic and acute pain is under-reported and the burden of the veteran, aging, athletic, and working populations is rising. Current pain management is limited by our capacity to collaborate with individuals continuing normal daily functions and self-administration of pain treatments outside of traditional healthcare appointments and hospital settings. In this review, the current gap in clinical care for real-time feedback and guidance with pain management decision-making for chronic and post-operative pain treatment is defined. We examine the recent and future applications for predictive analytics of opioid use after surgery and implementing real-time neural networks for personalized pain management goal setting for particular individuals on the path to discharge to normal function. Integration of personalized neural networks with longitudinal data may enable the development of future treatment personalizations paired with electrical simulations.
Figures
PreviousNext
Review Article
Open Access December 27, 2023 Endnote/Zotero/Mendeley (RIS) BibTeX

Leveraging Artificial Intelligence to Enhance Supply Chain Resilience: A Study of Predictive Analytics and Risk Mitigation Strategies

Abstract The management of supply chains is increasingly complex. This study provides a comparative analysis of the cost-benefit analysis for managing various risks. It identifies the financial implications of leveraging artificial intelligence in supply chains to better address risk. Empirical results show a business case for managing some sources of risk more proactively facilitated through predictive [...] Read more.
The management of supply chains is increasingly complex. This study provides a comparative analysis of the cost-benefit analysis for managing various risks. It identifies the financial implications of leveraging artificial intelligence in supply chains to better address risk. Empirical results show a business case for managing some sources of risk more proactively facilitated through predictive modeling techniques offered by AI. Across investigation streams, the use of AI results in an average total cost saving ranging from 41,254 to 4,099,617. Findings from our research can be used to inform managers and theorists about the implications of integrating AI technologies to manage risks in the supply chain. Our work also highlights areas for future research. Given the growing interest in studying sub-second forecasting, our research could be a point of departure for future investigations aimed at considering the impact of forecasting horizons such as an intra-day basis. We formulate a conceptual framework that considers how and to what extent performance evaluation metrics vary according to differences in the fidelity of predictive models and factor importance for identifying risks. We also utilize a mixed-method approach to demonstrate the applicability of our ideas in practice. Our results illustrate the financial implications of integrating AI predictive tools with business processes. Results suggest that real-world companies can circumvent inefficiencies associated with trying to manage many classes of risk via the use of AI-enhanced predictive analytics. As managers need to justify investment to top management, our work supports decision-making by providing a means of conducting a trade-off analysis at the tactical level.
Figures
PreviousNext
Review Article
Open Access December 27, 2019 Endnote/Zotero/Mendeley (RIS) BibTeX

Transforming the Retail Landscape: Srinivas’s Vision for Integrating Advanced Technologies in Supply Chain Efficiency and Customer Experience

Abstract Technological advances have had a transformative impact on the retail landscape. Challenges arise with guaranteeing technological changes lead to, rather than detract from, increased efficiency and positive experiences. First, integrating technology into the supply chain in an aggressive way is costly. It requires vast changes to existing systems and developments of cross-industry communication [...] Read more.
Technological advances have had a transformative impact on the retail landscape. Challenges arise with guaranteeing technological changes lead to, rather than detract from, increased efficiency and positive experiences. First, integrating technology into the supply chain in an aggressive way is costly. It requires vast changes to existing systems and developments of cross-industry communication protocols. Secondly, the public is often quick to reject technological changes or slow to become users. Finally, ensuring that technological advancements do not only benefit the top few retailers and are accessible to those of any size poses a challenge, as has been seen in the fate of only a handful of radical changes in retail technology. On the other hand, an integral aspect of technology, particularly that used for big data collection and processing, is that it can account for these and other variables. It can predict the success of ventures into modernizing or developing new systems and can identify more effective and efficient ways to do so. Of course, the concerns of job loss or technological monopoly still loom. But, it would seem, the continued advancement of technology in the retail landscape is inevitable.
Figures
PreviousNext
Review Article
Open Access December 18, 2020 Endnote/Zotero/Mendeley (RIS) BibTeX

Intelligent Supply Chain Ecosystems: Cloud-Native Architectures and Big Data Integration in Retail and Manufacturing Operations

Abstract The supply chain ecosystem plays a very important role in the success or failure of organizations, markets, and economies. Supply chain ecosystems are broadly defined as supply chain organizations and their collaborators. Today's combined challenges of pandemic shutdowns, rising internet usage, and skyrocketing climate change concerns demand that the supply chain ecosystem better connect with [...] Read more.
The supply chain ecosystem plays a very important role in the success or failure of organizations, markets, and economies. Supply chain ecosystems are broadly defined as supply chain organizations and their collaborators. Today's combined challenges of pandemic shutdowns, rising internet usage, and skyrocketing climate change concerns demand that the supply chain ecosystem better connect with customers, when and how they want, to provide products and services with high levels of availability and zero defects, yet collaboratively do this to reduce transportation and production risks, often at the same time reducing operational costs and carbon footprints. Addressing these challenges, this work explores the cloud delivery capabilities of cloud-native architectures to enable the big data integrations and analytics that are needed to grow smarter supply chain ecosystems. This work describes what smart supply chain ecosystems are and how they are planning to grow their technology and integration capabilities. Discussing the industry-leading advanced and manufacturing technology producer ecosystems, it is explained how their technology collaboration and investment plans are driven by climate change and job creation goals. With these background models, the work examines the new digital reality of customer-driven experiences and economies that are demanding cloud-native and intelligent technology partnerships to deliver climate objectives, operational responsiveness, and compatibility to avoid trading economies of scale for economies of integration. The final objectives of this paper are to share key ideas about the need to balance the growing customer service direct-to-consumer business models with those for collaborative investment by market and industry. In doing this, it hopes to promote an intelligent supply chain ecosystem foundation for helping its different participating countries survive and thrive in the digital economy.
Figures
PreviousNext
Review Article

Query parameters

Keyword:  Srinivas Kalisetty

View options

Citations of

Views of

Downloads of