Filter options

Publication Date
From
to
Subjects
Journals
Article Types
Countries / Territories
Open Access November 16, 2022 Endnote/Zotero/Mendeley (RIS) BibTeX

AI-Driven Automation in Monitoring Post-Operative Complications Across Health Systems

Abstract Artificial intelligence systems have been previously used to predict post-operative complications in small studies and single institutions. Here we developed a robust artificial intelligence model that predicts the risk of having cardiac, pulmonary, thromboembolic, or septic complications after elective, non-cardiac, non-ambulatory surgery. We combined structured and unstructured electronic health [...] Read more.
Artificial intelligence systems have been previously used to predict post-operative complications in small studies and single institutions. Here we developed a robust artificial intelligence model that predicts the risk of having cardiac, pulmonary, thromboembolic, or septic complications after elective, non-cardiac, non-ambulatory surgery. We combined structured and unstructured electronic health record data from 3.5 million surgical encounters from 25 medical centers between 2009 and 2017. Our neural network model predicted postoperative comorbidities 15 to 80 times faster than classical models. As such, our model can be used to assess the risk of having a specific complication postoperatively in a fraction of a second. With our model, we believe clinicians will be able to identify high-risk surgical patients and use their good judgment to mitigate upcoming risks, ultimately improving patient outcomes [1].
Figures
PreviousNext
Case Report
Open Access December 27, 2019 Endnote/Zotero/Mendeley (RIS) BibTeX

Predictive Analytics in Biologics: Improving Production Outcomes Using Big Data

Abstract Biopharmaceuticals, or biologics, are a burgeoning sector in the pharmaceutical industry, predicted to reach $239.4 billion by 2025. This unparalleled growth is often attributed to the enhanced specificity offered by large molecules over small molecules. The large size of the constituent proteins necessitates the continuous implementation of big data predictive analytics to elucidate the most [...] Read more.
Biopharmaceuticals, or biologics, are a burgeoning sector in the pharmaceutical industry, predicted to reach $239.4 billion by 2025. This unparalleled growth is often attributed to the enhanced specificity offered by large molecules over small molecules. The large size of the constituent proteins necessitates the continuous implementation of big data predictive analytics to elucidate the most effective candidates in the lead optimization process. These same methodologies can be applied, and with the advent of machine learning and automated predictive analytics, this is becoming an increasingly facile task, to the augmentation and optimization of the downstream production processes that comprise the majority of the development cost of any biologic. In this work, big data from cell line generation, product and process design, and large-scale lead validation studies have been used to compare the applicability of simple statistical models against these black-box approaches for the rapid acceleration of enzymes to the pilot plant stage. This research can be expanded upon to exploit the big datasets generated as part of the progression of biologics through the development pipeline to further optimize production outcomes. Over the coming months, data from the project will be used to probe which approaches are amenable to which processes and, as a result, more amenable to various economic simulations. The computed optimization objective for the HIT must include the cost of acquiring, storing, and analyzing data to construct these predictive models, alongside the expected commercial reward of choosing an optimally ranked candidate. In this vein, perspective must be taken in the probable future price, capability outputs, and ownership issues of increasingly sophisticated data analysis software as superstructures become more frequent. It is frequently stated that decisions made to reduce production costs are data-driven, but that is not because more economically or energetically costly experiments or production methods are employed; to truly evaluate production steps, dynamic energy, and economic models need to become more commonplace. Conversion of process quality approaches from large questionnaires, risk analysis, and expert opinion-driven methods to statistical and thus more reliable approaches is an area of future research in analytics used herein.
Figures
PreviousNext
Review Article
Open Access December 27, 2019 Endnote/Zotero/Mendeley (RIS) BibTeX

Revolutionizing Patient Care and Digital Infrastructure: Integrating Cloud Computing and Advanced Data Engineering for Industry Innovation

Abstract This work details how the integration of cloud computing and advanced data engineering can innovate and reshape patient care and digital infrastructure. In the healthcare sector, cloud services offer the necessary support to generate digitally-oriented services and service kits. These services can contain high levels of availability, low levels of latency, and on-demand scaling capabilities, while [...] Read more.
This work details how the integration of cloud computing and advanced data engineering can innovate and reshape patient care and digital infrastructure. In the healthcare sector, cloud services offer the necessary support to generate digitally-oriented services and service kits. These services can contain high levels of availability, low levels of latency, and on-demand scaling capabilities, while following the strictest data protection laws and regulations. On the other hand, these services can be combined with data engineering techniques to construct an ecosystem that enhances and adds an optimized data layer on any cloud environment. This ecosystem includes technologies to acquire, process, and manage healthcare data while respecting all regulatory obligations and institutions and can be part of a comprehensive digitalization strategy. The objective is to augment the healthcare services that the industry offers by leveraging healthcare data and AI technologies. Designed services, processes, and technologies can be described either as industry-agnostic services or healthcare-specific services that process and manage electronic healthcare records (EHR). Industry-agnostic services offer a set of tools and methodologies to conduct optimized data experiments. The goal is to exploit any variety, velocity, volume, and veracity of medical data. Healthcare-specific services offer a set of tools and methodologies to connect to any common EHR vendor in a privacy-preserving manner. Participating companies are thus able to hold, share, and make use of healthcare data in real-time. The proposed architecture can be transformative for the healthcare industry, opening up and facilitating experimentation on new and scalable service models. The transition to a more digital health approach would help overcome the limits encountered in traditional settings. Limitations in the availability of healthcare facilities and healthcare professionals have underpinned the increasing share of telemedicine in the care process. However, the record-keeping of the patients that undergo care outside of traditional healthcare facilities is often missing and can severely influence the continuity of treatment. Identifying new methods to implement disease prevention and early intervention processes is crucial to avoid more extensive treatment and to support those on multiple line therapies. For chronic patients, having a service available that monitors the state of health and intervenes when parameters go off the wanted range is crucial. However, the same patients are the most under the influence of the decision of care providers; a second opinion might be given remotely which the patient can access at any time on-demand. To address these different kinds of services, an ecosystem composed of a dictionary's worth data layer is outlined, able to live and operate seamlessly in any cloud environment. This future work's envisioned outcome is the rapid evolution and re-definition of the European healthcare landscape.
Figures
PreviousNext
Review Article
Open Access December 27, 2019 Endnote/Zotero/Mendeley (RIS) BibTeX

Transforming the Retail Landscape: Srinivas’s Vision for Integrating Advanced Technologies in Supply Chain Efficiency and Customer Experience

Abstract Technological advances have had a transformative impact on the retail landscape. Challenges arise with guaranteeing technological changes lead to, rather than detract from, increased efficiency and positive experiences. First, integrating technology into the supply chain in an aggressive way is costly. It requires vast changes to existing systems and developments of cross-industry communication [...] Read more.
Technological advances have had a transformative impact on the retail landscape. Challenges arise with guaranteeing technological changes lead to, rather than detract from, increased efficiency and positive experiences. First, integrating technology into the supply chain in an aggressive way is costly. It requires vast changes to existing systems and developments of cross-industry communication protocols. Secondly, the public is often quick to reject technological changes or slow to become users. Finally, ensuring that technological advancements do not only benefit the top few retailers and are accessible to those of any size poses a challenge, as has been seen in the fate of only a handful of radical changes in retail technology. On the other hand, an integral aspect of technology, particularly that used for big data collection and processing, is that it can account for these and other variables. It can predict the success of ventures into modernizing or developing new systems and can identify more effective and efficient ways to do so. Of course, the concerns of job loss or technological monopoly still loom. But, it would seem, the continued advancement of technology in the retail landscape is inevitable.
Figures
PreviousNext
Review Article

Query parameters

Keyword:   Venkata Krishna Azith Teja Ganti

View options

Citations of

Views of

Downloads of